Difference between revisions of "Series Problems"

From Grad Wiki
Jump to navigation Jump to search
 
Line 27: Line 27:
 
::<span class="exam"><math>\sum_{n=1}^\infty \frac{(n^2+1)^{2n}}{(2n^2+1)^n}</math>
 
::<span class="exam"><math>\sum_{n=1}^\infty \frac{(n^2+1)^{2n}}{(2n^2+1)^n}</math>
  
== [[031_Review Part 1,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
+
== [[Series Problems,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
  
<span class="exam">True or false: Let &nbsp;<math style="vertical-align: 0px">W</math>&nbsp; be a subspace of &nbsp;<math style="vertical-align: 0px">\mathbb{R}^4</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\vec{v}</math>&nbsp; be a vector in &nbsp;<math style="vertical-align: 0px">\mathbb{R}^4.</math>&nbsp; If &nbsp;<math style="vertical-align: 0px">\vec{v}\in W</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">\vec{v}\in W^\perp,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">\vec{v}=\vec{0}.</math>
+
::<span class="exam"><math>\sum_{n=1}^\infty \frac{6n-12}{n^2-4n+5}</math> (using the Integral Test)
  
== [[031_Review Part 1,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
+
== [[Series Problems,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
  
<span class="exam">True or false: If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is an invertible &nbsp;<math style="vertical-align: 0px">3\times 3</math>&nbsp; matrix, and &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">C</math>&nbsp; are &nbsp;<math style="vertical-align: 0px">3\times 3</math>&nbsp; matrices such that &nbsp;<math style="vertical-align: -4px">AB=AC,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">B=C.</math>
+
::<span class="exam"><math>\sum_{n=1}^\infty \frac{n-1}{n^2\sqrt{n}}</math>
 +
 
 +
== [[Series Problems,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==
 +
 
 +
::<span class="exam"><math>\sum_{n=1}^\infty \frac{\sin(\frac{n\pi}{2})}{n^3}</math>
 +
 
 +
== [[Series Problems,_Problem_11|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 11&nbsp;</span>]] ==
 +
 
 +
::<span class="exam"><math>\sum_{n=1}^\infty \frac{3^n+4^n}{5^n}</math>
 +
 
 +
== [[Series Problems,_Problem_12|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 12&nbsp;</span>]] ==
 +
 
 +
::<span class="exam"><math>\sum_{n=1}^\infty \frac{n^2+1}{5^n}</math>
 +
 
 +
== [[Series Problems,_Problem_13|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 13&nbsp;</span>]] ==
 +
 
 +
::<span class="exam"><math>\sum_{n=1}^\infty \frac{e^{\frac{1}{n}}}{n^2}</math>
 +
 
 +
== [[Series Problems,_Problem_14|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 14&nbsp;</span>]] ==
 +
 
 +
::<span class="exam"><math>\sum_{n=1}^\infty \sin(n)</math>
 +
 
 +
== [[Series Problems,_Problem_15|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 15&nbsp;</span>]] ==
 +
 
 +
::<span class="exam"><math>\sum_{n=1}^\infty n^2e^{-n^3}</math>

Latest revision as of 13:43, 22 October 2017

These questions are meant to be practice problems for series.

Determine whether the series converge or diverge.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

 Problem 2 

 Problem 3 

 Problem 4 

 Problem 5 

 Problem 6 

 Problem 7 

 Problem 8 

(using the Integral Test)

 Problem 9 

 Problem 10 

 Problem 11 

 Problem 12 

 Problem 13 

 Problem 14 

 Problem 15