Difference between revisions of "Series Problems"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
'''These questions are meant to be additional practice problems for series.'''
+
'''These questions are meant to be practice problems for series.'''
  
 
'''Determine whether the series converge or diverge.'''
 
'''Determine whether the series converge or diverge.'''
Line 6: Line 6:
 
<div class="noautonum">__TOC__</div>
 
<div class="noautonum">__TOC__</div>
  
== [[031_Review Part 1,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
+
== [[Series Problems,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
<span class="exam">True or false: If all the entries of a &nbsp;<math style="vertical-align: 0px">7\times 7</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: -4px">7,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">\text{det }A</math>&nbsp; must be &nbsp;<math style="vertical-align: 0px">7^7.</math>
+
::<span class="exam"><math>\sum_{n=1}^\infty \frac{2+3^n}{4^n}</math>
  
== [[031_Review Part 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
+
== [[Series Problems,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
<span class="exam"> True or false: If a matrix &nbsp;<math style="vertical-align: 0px">A^2</math>&nbsp; is diagonalizable, then the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; must be diagonalizable as well.
+
::<span class="exam"><math>\sum_{n=1}^\infty \ln\Bigg(\frac{n^2+1}{2n^2+1}\Bigg)</math>
  
== [[031_Review Part 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
+
== [[Series Problems,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
<span class="exam">True or false: If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a &nbsp;<math style="vertical-align: -1px">4\times 4</math>&nbsp; matrix with characteristic equation &nbsp;<math style="vertical-align: -5px">\lambda(\lambda-1)(\lambda+1)(\lambda+e)=0,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is diagonalizable.
+
::<span class="exam"><math>\sum_{n=1}^\infty \frac{n}{n^4+1}</math>
  
 
== [[031_Review Part 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
== [[031_Review Part 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==

Revision as of 13:30, 22 October 2017

These questions are meant to be practice problems for series.

Determine whether the series converge or diverge.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

 Problem 2 

 Problem 3 

 Problem 4 

True or false: If    is invertible, then    is diagonalizable.

 Problem 5 

True or false: If    and    are invertible    matrices, then so is  

 Problem 6 

True or false: If    is a    matrix and    then    is consistent for all    in  

 Problem 7 

True or false: Let    for    matrices    and    If    is invertible, then    is invertible.

 Problem 8 

True or false: Let    be a subspace of    and    be a vector in    If    and    then  

 Problem 9 

True or false: If    is an invertible    matrix, and    and    are    matrices such that    then