Difference between revisions of "Series Problems"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "text")
 
Line 1: Line 1:
text
+
'''These questions are meant to be additional practice problems for series.'''
 +
 
 +
'''Determine whether the series converge or diverge.'''
 +
 
 +
'''Click on the <span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''
 +
<div class="noautonum">__TOC__</div>
 +
 
 +
== [[031_Review Part 1,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 +
<span class="exam">True or false: If all the entries of a &nbsp;<math style="vertical-align: 0px">7\times 7</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: -4px">7,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">\text{det }A</math>&nbsp; must be &nbsp;<math style="vertical-align: 0px">7^7.</math>
 +
 
 +
== [[031_Review Part 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 +
<span class="exam"> True or false: If a matrix &nbsp;<math style="vertical-align: 0px">A^2</math>&nbsp; is diagonalizable, then the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; must be diagonalizable as well.
 +
 
 +
== [[031_Review Part 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 +
<span class="exam">True or false: If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a &nbsp;<math style="vertical-align: -1px">4\times 4</math>&nbsp; matrix with characteristic equation &nbsp;<math style="vertical-align: -5px">\lambda(\lambda-1)(\lambda+1)(\lambda+e)=0,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is diagonalizable.
 +
 
 +
== [[031_Review Part 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 +
<span class="exam"> True or false: If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible, then &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is diagonalizable.
 +
 
 +
== [[031_Review Part 1,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 +
<span class="exam">True or false: If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; are invertible &nbsp;<math style="vertical-align: 0px">n\times n</math>&nbsp; matrices, then so is &nbsp;<math style="vertical-align: -1px">A+B.</math>
 +
 
 +
== [[031_Review Part 1,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
 +
<span class="exam"> True or false: If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a &nbsp;<math style="vertical-align: 0px">3\times 5</math>&nbsp; matrix and &nbsp;<math style="vertical-align: -4px">\text{dim Nul }A=2,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">A\vec{x}=\vec{b}</math>&nbsp; is consistent for all &nbsp;<math style="vertical-align: 0px">\vec{b}</math>&nbsp; in &nbsp;<math style="vertical-align: 0px">\mathbb{R}^3.</math>
 +
 
 +
== [[031_Review Part 1,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
 +
 
 +
<span class="exam">True or false: Let &nbsp;<math style="vertical-align: 0px">C=AB</math>&nbsp; for &nbsp;<math style="vertical-align: 0px">4\times 4</math>&nbsp; matrices &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">B.</math>&nbsp; If &nbsp;<math style="vertical-align: 0px">C</math>&nbsp; is invertible, then &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible.
 +
 
 +
== [[031_Review Part 1,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
 +
 
 +
<span class="exam">True or false: Let &nbsp;<math style="vertical-align: 0px">W</math>&nbsp; be a subspace of &nbsp;<math style="vertical-align: 0px">\mathbb{R}^4</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\vec{v}</math>&nbsp; be a vector in &nbsp;<math style="vertical-align: 0px">\mathbb{R}^4.</math>&nbsp; If &nbsp;<math style="vertical-align: 0px">\vec{v}\in W</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">\vec{v}\in W^\perp,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">\vec{v}=\vec{0}.</math>
 +
 
 +
== [[031_Review Part 1,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
 +
 
 +
<span class="exam">True or false: If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is an invertible &nbsp;<math style="vertical-align: 0px">3\times 3</math>&nbsp; matrix, and &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">C</math>&nbsp; are &nbsp;<math style="vertical-align: 0px">3\times 3</math>&nbsp; matrices such that &nbsp;<math style="vertical-align: -4px">AB=AC,</math>&nbsp; then &nbsp;<math style="vertical-align: 0px">B=C.</math>

Revision as of 13:24, 22 October 2017

These questions are meant to be additional practice problems for series.

Determine whether the series converge or diverge.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

True or false: If all the entries of a    matrix    are    then    must be  

 Problem 2 

True or false: If a matrix    is diagonalizable, then the matrix    must be diagonalizable as well.

 Problem 3 

True or false: If    is a    matrix with characteristic equation    then    is diagonalizable.

 Problem 4 

True or false: If    is invertible, then    is diagonalizable.

 Problem 5 

True or false: If    and    are invertible    matrices, then so is  

 Problem 6 

True or false: If    is a    matrix and    then    is consistent for all    in  

 Problem 7 

True or false: Let    for    matrices    and    If    is invertible, then    is invertible.

 Problem 8 

True or false: Let    be a subspace of    and    be a vector in    If    and    then  

 Problem 9 

True or false: If    is an invertible    matrix, and    and    are    matrices such that    then