Difference between revisions of "Series Problems"
Kayla Murray (talk | contribs) (Created page with "text") |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
− | text | + | '''These questions are meant to be additional practice problems for series.''' |
+ | |||
+ | '''Determine whether the series converge or diverge.''' | ||
+ | |||
+ | '''Click on the <span class="biglink" style="color:darkblue;"> boxed problem numbers </span> to go to a solution.''' | ||
+ | <div class="noautonum">__TOC__</div> | ||
+ | |||
+ | == [[031_Review Part 1,_Problem_1|<span class="biglink"><span style="font-size:80%"> Problem 1 </span></span>]] == | ||
+ | <span class="exam">True or false: If all the entries of a <math style="vertical-align: 0px">7\times 7</math> matrix <math style="vertical-align: 0px">A</math> are <math style="vertical-align: -4px">7,</math> then <math style="vertical-align: 0px">\text{det }A</math> must be <math style="vertical-align: 0px">7^7.</math> | ||
+ | |||
+ | == [[031_Review Part 1,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | ||
+ | <span class="exam"> True or false: If a matrix <math style="vertical-align: 0px">A^2</math> is diagonalizable, then the matrix <math style="vertical-align: 0px">A</math> must be diagonalizable as well. | ||
+ | |||
+ | == [[031_Review Part 1,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == | ||
+ | <span class="exam">True or false: If <math style="vertical-align: 0px">A</math> is a <math style="vertical-align: -1px">4\times 4</math> matrix with characteristic equation <math style="vertical-align: -5px">\lambda(\lambda-1)(\lambda+1)(\lambda+e)=0,</math> then <math style="vertical-align: 0px">A</math> is diagonalizable. | ||
+ | |||
+ | == [[031_Review Part 1,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == | ||
+ | <span class="exam"> True or false: If <math style="vertical-align: 0px">A</math> is invertible, then <math style="vertical-align: 0px">A</math> is diagonalizable. | ||
+ | |||
+ | == [[031_Review Part 1,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == | ||
+ | <span class="exam">True or false: If <math style="vertical-align: 0px">A</math> and <math style="vertical-align: 0px">B</math> are invertible <math style="vertical-align: 0px">n\times n</math> matrices, then so is <math style="vertical-align: -1px">A+B.</math> | ||
+ | |||
+ | == [[031_Review Part 1,_Problem_6|<span class="biglink"><span style="font-size:80%"> Problem 6 </span>]] == | ||
+ | <span class="exam"> True or false: If <math style="vertical-align: 0px">A</math> is a <math style="vertical-align: 0px">3\times 5</math> matrix and <math style="vertical-align: -4px">\text{dim Nul }A=2,</math> then <math style="vertical-align: 0px">A\vec{x}=\vec{b}</math> is consistent for all <math style="vertical-align: 0px">\vec{b}</math> in <math style="vertical-align: 0px">\mathbb{R}^3.</math> | ||
+ | |||
+ | == [[031_Review Part 1,_Problem_7|<span class="biglink"><span style="font-size:80%"> Problem 7 </span>]] == | ||
+ | |||
+ | <span class="exam">True or false: Let <math style="vertical-align: 0px">C=AB</math> for <math style="vertical-align: 0px">4\times 4</math> matrices <math style="vertical-align: 0px">A</math> and <math style="vertical-align: 0px">B.</math> If <math style="vertical-align: 0px">C</math> is invertible, then <math style="vertical-align: 0px">A</math> is invertible. | ||
+ | |||
+ | == [[031_Review Part 1,_Problem_8|<span class="biglink"><span style="font-size:80%"> Problem 8 </span>]] == | ||
+ | |||
+ | <span class="exam">True or false: Let <math style="vertical-align: 0px">W</math> be a subspace of <math style="vertical-align: 0px">\mathbb{R}^4</math> and <math style="vertical-align: 0px">\vec{v}</math> be a vector in <math style="vertical-align: 0px">\mathbb{R}^4.</math> If <math style="vertical-align: 0px">\vec{v}\in W</math> and <math style="vertical-align: -4px">\vec{v}\in W^\perp,</math> then <math style="vertical-align: 0px">\vec{v}=\vec{0}.</math> | ||
+ | |||
+ | == [[031_Review Part 1,_Problem_9|<span class="biglink"><span style="font-size:80%"> Problem 9 </span>]] == | ||
+ | |||
+ | <span class="exam">True or false: If <math style="vertical-align: 0px">A</math> is an invertible <math style="vertical-align: 0px">3\times 3</math> matrix, and <math style="vertical-align: 0px">B</math> and <math style="vertical-align: 0px">C</math> are <math style="vertical-align: 0px">3\times 3</math> matrices such that <math style="vertical-align: -4px">AB=AC,</math> then <math style="vertical-align: 0px">B=C.</math> |
Revision as of 13:24, 22 October 2017
These questions are meant to be additional practice problems for series.
Determine whether the series converge or diverge.
Click on the boxed problem numbers to go to a solution.
Problem 1
True or false: If all the entries of a matrix are then must be
Problem 2
True or false: If a matrix is diagonalizable, then the matrix must be diagonalizable as well.
Problem 3
True or false: If is a matrix with characteristic equation then is diagonalizable.
Problem 4
True or false: If is invertible, then is diagonalizable.
Problem 5
True or false: If and are invertible matrices, then so is
Problem 6
True or false: If is a matrix and then is consistent for all in
Problem 7
True or false: Let for matrices and If is invertible, then is invertible.
Problem 8
True or false: Let be a subspace of and be a vector in If and then
Problem 9
True or false: If is an invertible matrix, and and are matrices such that then