Difference between revisions of "031 Review Part 3, Problem 1"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 131: | Line 131: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |Now, we find a basis for each eigenspace by solving <math style="vertical-align: -6px">(A-\lambda I)\vec{x}=\vec{0}</math> for each eigenvalue <math style="vertical-align: 0px">\lambda.</math> | ||
| + | |- | ||
| + | |For the eigenvalue <math style="vertical-align: -4px">\lambda=2,</math> we have | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{A-2I} & = & \displaystyle{\begin{bmatrix} | ||
| + | 2 & 0 & -2 \\ | ||
| + | 1 & 3 & 2 \\ | ||
| + | 0 & 0 & 3 | ||
| + | \end{bmatrix}-\begin{bmatrix} | ||
| + | 2 & 0 & 0 \\ | ||
| + | 0 & 2 & 0 \\ | ||
| + | 0 & 0 & 2 | ||
| + | \end{bmatrix}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\begin{bmatrix} | ||
| + | 0 & 0 & -2 \\ | ||
| + | 1 & 1 & 2 \\ | ||
| + | 0 & 0 & 1 | ||
| + | \end{bmatrix}}\\ | ||
| + | &&\\ | ||
| + | & \sim & \displaystyle{\begin{bmatrix} | ||
| + | 1 & 1 & 0 \\ | ||
| + | 0 & 0 & 1 \\ | ||
| + | 0 & 0 & 0 | ||
| + | \end{bmatrix}.} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |We see that <math style="vertical-align: -3px">x_2</math> is a free variable. So, a basis for the eigenspace corresponding to <math style="vertical-align: -1px">2</math> is | ||
| + | |- | ||
| + | | | ||
| + | ::<math>\bigg\{\begin{bmatrix} | ||
| + | -1 \\ | ||
| + | 1 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}\bigg\}.</math> | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 3: | ||
| + | |- | ||
| + | |For the eigenvalue <math>\lambda=3,</math> we have | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{A-3I} & = & \displaystyle{\begin{bmatrix} | ||
| + | 2 & 0 & -2 \\ | ||
| + | 1 & 3 & 2 \\ | ||
| + | 0 & 0 & 3 | ||
| + | \end{bmatrix}-\begin{bmatrix} | ||
| + | 3 & 0 & 0 \\ | ||
| + | 0 & 3 & 0 \\ | ||
| + | 0 & 0 & 3 | ||
| + | \end{bmatrix}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\begin{bmatrix} | ||
| + | -1 & 0 & -2 \\ | ||
| + | 1 & 0 & 2 \\ | ||
| + | 0 & 0 & 0 | ||
| + | \end{bmatrix}}\\ | ||
| + | &&\\ | ||
| + | & \sim & \displaystyle{\begin{bmatrix} | ||
| + | 1 & 0 & 2 \\ | ||
| + | 0 & 0 & 0 \\ | ||
| + | 0 & 0 & 0 | ||
| + | \end{bmatrix}.} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |We see that <math>x_2</math> and <math>x_3</math> are free variables. So, a basis for the eigenspace corresponding to <math>3</math> is | ||
| + | |- | ||
| + | | | ||
| + | ::<math>\bigg\{\begin{bmatrix} | ||
| + | 0 \\ | ||
| + | 1 \\ | ||
| + | 0 | ||
| + | \end{bmatrix},\begin{bmatrix} | ||
| + | -2 \\ | ||
| + | 0 \\ | ||
| + | 1 | ||
| + | \end{bmatrix}\bigg\}.</math> | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 4: | ||
| + | |- | ||
| + | |Since <math>A</math> has <math>3</math> linearly independent eigenvectors, | ||
| + | |- | ||
| + | |<math>A</math> is diagonalizable by the Diagonalization Theorem. | ||
| + | |- | ||
| + | |Using the Diagonalization Theorem, we can diagonalize <math>A</math> using the information from the steps above. | ||
| + | |- | ||
| + | |So, we have | ||
|- | |- | ||
| | | | ||
| + | ::<math>D=\begin{bmatrix} | ||
| + | 2 & 0 & 0 \\ | ||
| + | 0 & 3 & 0 \\ | ||
| + | 0 & 0 & 3 | ||
| + | \end{bmatrix},P=\begin{bmatrix} | ||
| + | -1 & 0 & -2 \\ | ||
| + | 1 & 1 & 0 \\ | ||
| + | 0 & 0 & 1 | ||
| + | \end{bmatrix}.</math> | ||
|} | |} | ||
| Line 142: | Line 245: | ||
|- | |- | ||
| − | | '''(b)''' | + | | '''(b)''' <math style="vertical-align: 0px">A</math> is diagonalizable and <math>D=\begin{bmatrix} |
| + | 2 & 0 & 0 \\ | ||
| + | 0 & 3 & 0 \\ | ||
| + | 0 & 0 & 3 | ||
| + | \end{bmatrix},P=\begin{bmatrix} | ||
| + | -1 & 0 & -2 \\ | ||
| + | 1 & 1 & 0 \\ | ||
| + | 0 & 0 & 1 | ||
| + | \end{bmatrix}.</math> | ||
|} | |} | ||
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']] | [[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 16:05, 13 October 2017
(a) Is the matrix diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
(b) Is the matrix diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
| Foundations: |
|---|
| Recall: |
| 1. The eigenvalues of a triangular matrix are the entries on the diagonal. |
| 2. By the Diagonalization Theorem, an Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\times n} matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is diagonalizable |
|
Solution:
(a)
| Step 1: |
|---|
| To answer this question, we examine the eigenvalues and eigenvectors of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A.} |
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is a triangular matrix, the eigenvalues are the entries on the diagonal. |
| Hence, the only eigenvalue of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3.} |
| Step 2: |
|---|
| Now, we find a basis for the eigenspace corresponding to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} by solving Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (A-3I)\vec{x}=\vec{0}.} |
| We have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{A-3I} & = & \displaystyle{\begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}-\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}}\\ &&\\ & = & \displaystyle{\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.} \end{array}} |
| Solving this system, we see Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1} is a free variable and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_2=0.} |
| Therefore, a basis for this eigenspace is |
|
| Step 3: |
|---|
| Now, we know that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} only has one linearly independent eigenvector. |
| By the Diagonalization Theorem, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} must have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2} linearly independent eigenvectors to be diagonalizable. |
| Hence, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is not diagonalizable. |
(b)
| Step 1: |
|---|
| First, we find the eigenvalues of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} by solving Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{det }(A-\lambda I)=0.} |
| Using cofactor expansion, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\text{det }(A-\lambda I)} & = & \displaystyle{\text{det }\Bigg(\begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}-\begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}\Bigg)}\\ &&\\ & = & \displaystyle{\text{det }\Bigg(\begin{bmatrix} 2-\lambda & 0 & -2 \\ 1 & 3-\lambda & 2 \\ 0 & 0 & 3-\lambda \end{bmatrix}\Bigg)}\\ &&\\ & = & \displaystyle{(-1)^{(2+2)}(3-\lambda)\text{det }\bigg(\begin{bmatrix} 2-\lambda & -2 \\ 0 & 3-\lambda \end{bmatrix}\bigg)}\\ &&\\ & = & \displaystyle{(3-\lambda)(2-\lambda)(3-\lambda).} \end{array}} |
| Therefore, setting |
|
| we find that the eigenvalues of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} are Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2.} |
| Step 2: |
|---|
| Now, we find a basis for each eigenspace by solving Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (A-\lambda I)\vec{x}=\vec{0}} for each eigenvalue Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda.} |
| For the eigenvalue Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda=2,} we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{A-2I} & = & \displaystyle{\begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}-\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}}\\ &&\\ & = & \displaystyle{\begin{bmatrix} 0 & 0 & -2 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}}\\ &&\\ & \sim & \displaystyle{\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.} \end{array}} |
| We see that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_2} is a free variable. So, a basis for the eigenspace corresponding to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2} is |
|
| Step 3: |
|---|
| For the eigenvalue Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda=3,} we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{A-3I} & = & \displaystyle{\begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}-\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}}\\ &&\\ & = & \displaystyle{\begin{bmatrix} -1 & 0 & -2 \\ 1 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}}\\ &&\\ & \sim & \displaystyle{\begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.} \end{array}} |
| We see that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_2} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_3} are free variables. So, a basis for the eigenspace corresponding to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} is |
|
| Step 4: |
|---|
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} has Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} linearly independent eigenvectors, |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is diagonalizable by the Diagonalization Theorem. |
| Using the Diagonalization Theorem, we can diagonalize Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} using the information from the steps above. |
| So, we have |
|
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is not diagonalizable. |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is diagonalizable and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D=\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix},P=\begin{bmatrix} -1 & 0 & -2 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.} |