Difference between revisions of "031 Review Part 3, Problem 1"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 131: | Line 131: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |Now, we find a basis for each eigenspace by solving <math style="vertical-align: -6px">(A-\lambda I)\vec{x}=\vec{0}</math> for each eigenvalue <math style="vertical-align: 0px">\lambda.</math> | ||
| + | |- | ||
| + | |For the eigenvalue <math style="vertical-align: -4px">\lambda=2,</math> we have | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{A-2I} & = & \displaystyle{\begin{bmatrix} | ||
| + | 2 & 0 & -2 \\ | ||
| + | 1 & 3 & 2 \\ | ||
| + | 0 & 0 & 3 | ||
| + | \end{bmatrix}-\begin{bmatrix} | ||
| + | 2 & 0 & 0 \\ | ||
| + | 0 & 2 & 0 \\ | ||
| + | 0 & 0 & 2 | ||
| + | \end{bmatrix}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\begin{bmatrix} | ||
| + | 0 & 0 & -2 \\ | ||
| + | 1 & 1 & 2 \\ | ||
| + | 0 & 0 & 1 | ||
| + | \end{bmatrix}}\\ | ||
| + | &&\\ | ||
| + | & \sim & \displaystyle{\begin{bmatrix} | ||
| + | 1 & 1 & 0 \\ | ||
| + | 0 & 0 & 1 \\ | ||
| + | 0 & 0 & 0 | ||
| + | \end{bmatrix}.} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |We see that <math style="vertical-align: -3px">x_2</math> is a free variable. So, a basis for the eigenspace corresponding to <math style="vertical-align: -1px">2</math> is | ||
| + | |- | ||
| + | | | ||
| + | ::<math>\bigg\{\begin{bmatrix} | ||
| + | -1 \\ | ||
| + | 1 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}\bigg\}.</math> | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 3: | ||
| + | |- | ||
| + | |For the eigenvalue <math>\lambda=3,</math> we have | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{A-3I} & = & \displaystyle{\begin{bmatrix} | ||
| + | 2 & 0 & -2 \\ | ||
| + | 1 & 3 & 2 \\ | ||
| + | 0 & 0 & 3 | ||
| + | \end{bmatrix}-\begin{bmatrix} | ||
| + | 3 & 0 & 0 \\ | ||
| + | 0 & 3 & 0 \\ | ||
| + | 0 & 0 & 3 | ||
| + | \end{bmatrix}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\begin{bmatrix} | ||
| + | -1 & 0 & -2 \\ | ||
| + | 1 & 0 & 2 \\ | ||
| + | 0 & 0 & 0 | ||
| + | \end{bmatrix}}\\ | ||
| + | &&\\ | ||
| + | & \sim & \displaystyle{\begin{bmatrix} | ||
| + | 1 & 0 & 2 \\ | ||
| + | 0 & 0 & 0 \\ | ||
| + | 0 & 0 & 0 | ||
| + | \end{bmatrix}.} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |We see that <math>x_2</math> and <math>x_3</math> are free variables. So, a basis for the eigenspace corresponding to <math>3</math> is | ||
| + | |- | ||
| + | | | ||
| + | ::<math>\bigg\{\begin{bmatrix} | ||
| + | 0 \\ | ||
| + | 1 \\ | ||
| + | 0 | ||
| + | \end{bmatrix},\begin{bmatrix} | ||
| + | -2 \\ | ||
| + | 0 \\ | ||
| + | 1 | ||
| + | \end{bmatrix}\bigg\}.</math> | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 4: | ||
| + | |- | ||
| + | |Since <math>A</math> has <math>3</math> linearly independent eigenvectors, | ||
| + | |- | ||
| + | |<math>A</math> is diagonalizable by the Diagonalization Theorem. | ||
| + | |- | ||
| + | |Using the Diagonalization Theorem, we can diagonalize <math>A</math> using the information from the steps above. | ||
| + | |- | ||
| + | |So, we have | ||
|- | |- | ||
| | | | ||
| + | ::<math>D=\begin{bmatrix} | ||
| + | 2 & 0 & 0 \\ | ||
| + | 0 & 3 & 0 \\ | ||
| + | 0 & 0 & 3 | ||
| + | \end{bmatrix},P=\begin{bmatrix} | ||
| + | -1 & 0 & -2 \\ | ||
| + | 1 & 1 & 0 \\ | ||
| + | 0 & 0 & 1 | ||
| + | \end{bmatrix}.</math> | ||
|} | |} | ||
| Line 142: | Line 245: | ||
|- | |- | ||
| − | | '''(b)''' | + | | '''(b)''' <math style="vertical-align: 0px">A</math> is diagonalizable and <math>D=\begin{bmatrix} |
| + | 2 & 0 & 0 \\ | ||
| + | 0 & 3 & 0 \\ | ||
| + | 0 & 0 & 3 | ||
| + | \end{bmatrix},P=\begin{bmatrix} | ||
| + | -1 & 0 & -2 \\ | ||
| + | 1 & 1 & 0 \\ | ||
| + | 0 & 0 & 1 | ||
| + | \end{bmatrix}.</math> | ||
|} | |} | ||
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']] | [[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 16:05, 13 October 2017
(a) Is the matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A= \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}} diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
(b) Is the matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A= \begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}} diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
| Foundations: |
|---|
| Recall: |
| 1. The eigenvalues of a triangular matrix are the entries on the diagonal. |
| 2. By the Diagonalization Theorem, an Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\times n} matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is diagonalizable |
|
Solution:
(a)
| Step 1: |
|---|
| To answer this question, we examine the eigenvalues and eigenvectors of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A.} |
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is a triangular matrix, the eigenvalues are the entries on the diagonal. |
| Hence, the only eigenvalue of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3.} |
| Step 2: |
|---|
| Now, we find a basis for the eigenspace corresponding to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} by solving Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (A-3I)\vec{x}=\vec{0}.} |
| We have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{A-3I} & = & \displaystyle{\begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}-\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}}\\ &&\\ & = & \displaystyle{\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.} \end{array}} |
| Solving this system, we see is a free variable and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_2=0.} |
| Therefore, a basis for this eigenspace is |
|
| Step 3: |
|---|
| Now, we know that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} only has one linearly independent eigenvector. |
| By the Diagonalization Theorem, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} must have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2} linearly independent eigenvectors to be diagonalizable. |
| Hence, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is not diagonalizable. |
(b)
| Step 1: |
|---|
| First, we find the eigenvalues of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} by solving Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{det }(A-\lambda I)=0.} |
| Using cofactor expansion, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\text{det }(A-\lambda I)} & = & \displaystyle{\text{det }\Bigg(\begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}-\begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}\Bigg)}\\ &&\\ & = & \displaystyle{\text{det }\Bigg(\begin{bmatrix} 2-\lambda & 0 & -2 \\ 1 & 3-\lambda & 2 \\ 0 & 0 & 3-\lambda \end{bmatrix}\Bigg)}\\ &&\\ & = & \displaystyle{(-1)^{(2+2)}(3-\lambda)\text{det }\bigg(\begin{bmatrix} 2-\lambda & -2 \\ 0 & 3-\lambda \end{bmatrix}\bigg)}\\ &&\\ & = & \displaystyle{(3-\lambda)(2-\lambda)(3-\lambda).} \end{array}} |
| Therefore, setting |
|
| we find that the eigenvalues of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} are Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2.} |
| Step 2: |
|---|
| Now, we find a basis for each eigenspace by solving Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (A-\lambda I)\vec{x}=\vec{0}} for each eigenvalue Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda.} |
| For the eigenvalue Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda=2,} we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{A-2I} & = & \displaystyle{\begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}-\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}}\\ &&\\ & = & \displaystyle{\begin{bmatrix} 0 & 0 & -2 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}}\\ &&\\ & \sim & \displaystyle{\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.} \end{array}} |
| We see that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_2} is a free variable. So, a basis for the eigenspace corresponding to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2} is |
|
| Step 3: |
|---|
| For the eigenvalue Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda=3,} we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{A-3I} & = & \displaystyle{\begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}-\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}}\\ &&\\ & = & \displaystyle{\begin{bmatrix} -1 & 0 & -2 \\ 1 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}}\\ &&\\ & \sim & \displaystyle{\begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.} \end{array}} |
| We see that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_2} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_3} are free variables. So, a basis for the eigenspace corresponding to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} is |
|
| Step 4: |
|---|
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} has Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} linearly independent eigenvectors, |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is diagonalizable by the Diagonalization Theorem. |
| Using the Diagonalization Theorem, we can diagonalize Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} using the information from the steps above. |
| So, we have |
|
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is not diagonalizable. |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is diagonalizable and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D=\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix},P=\begin{bmatrix} -1 & 0 & -2 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.} |