Difference between revisions of "031 Review Part 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 28: Line 28:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2:  
 
!Step 2:  
 +
|-
 +
|Since the matrix is triangular and all the eigenvalues are distinct, the eigenvectors of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{bmatrix}
 +
          1  \\
 +
          0 \\
 +
          0
 +
        \end{bmatrix},\begin{bmatrix}
 +
          0  \\
 +
          1 \\
 +
          0
 +
        \end{bmatrix},\begin{bmatrix}
 +
          0  \\
 +
          0 \\
 +
          1
 +
        \end{bmatrix}</math>
 +
|-
 +
|where each eigenvector has eigenvalue &nbsp;<math style="vertical-align: -4px">1,-1</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">2,</math>&nbsp; respectively.
 
|}
 
|}
  
Line 36: Line 53:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; &nbsp; &nbsp;  
+
|&nbsp;&nbsp; &nbsp; &nbsp; The eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: -4px">1,-1</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">2,</math>&nbsp; and the corresponding eigenvectors are
 +
|-
 +
|
 +
::<math>\begin{bmatrix}
 +
          1  \\
 +
          0 \\
 +
          0
 +
        \end{bmatrix},\begin{bmatrix}
 +
          0  \\
 +
          1 \\
 +
          0
 +
        \end{bmatrix},\begin{bmatrix}
 +
          0  \\
 +
          0 \\
 +
          1
 +
        \end{bmatrix}.</math>
 
|}
 
|}
 
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
 
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:19, 13 October 2017

Find the eigenvalues and eigenvectors of the matrix  


Foundations:  
An eigenvector of a matrix    is a nonzero vector    such that    for some scalar  
In this case, we say that    is an eigenvalue of  


Solution:

Step 1:  
Since    is a triangular matrix, the eigenvalues of    are the entries on the diagonal.
So, the eigenvalues of    are    and  
Step 2:  
Since the matrix is triangular and all the eigenvalues are distinct, the eigenvectors of    are
where each eigenvector has eigenvalue    and    respectively.


Final Answer:  
       The eigenvalues of    are    and    and the corresponding eigenvectors are

Return to Sample Exam