Difference between revisions of "031 Review Part 3, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 30: | Line 30: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| − | !Step 1: | + | !Step 1: |
| + | |- | ||
| + | |To determine whether the vector | ||
|- | |- | ||
| | | | ||
| + | ::<math>\begin{bmatrix} | ||
| + | 2 \\ | ||
| + | 6 \\ | ||
| + | 4 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}</math> | ||
| + | |- | ||
| + | |is in <math>W^\perp,</math> it suffices to see if this vector is orthogonal to | ||
| + | |- | ||
| + | |the basis elements of <math>W.</math> | ||
| + | |- | ||
| + | |Notice that we have | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\begin{bmatrix} | ||
| + | 2 \\ | ||
| + | 6 \\ | ||
| + | 4 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}\cdot \begin{bmatrix} | ||
| + | 2 \\ | ||
| + | 0 \\ | ||
| + | -1 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}} & = & \displaystyle{2(2)+6(0)+4(-1)+0(0)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{0.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 39: | Line 70: | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\begin{bmatrix} | ||
| + | 2 \\ | ||
| + | 6 \\ | ||
| + | 4 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}\cdot \begin{bmatrix} | ||
| + | -3 \\ | ||
| + | 1 \\ | ||
| + | 0 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}} & = & \displaystyle{2(-3)+6(1)+4(0)+0(0)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{0.} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |Hence, we conclude | ||
| + | |- | ||
| + | | | ||
| + | ::<math>\begin{bmatrix} | ||
| + | 2 \\ | ||
| + | 6 \\ | ||
| + | 4 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}\in W^\perp.</math> | ||
|} | |} | ||
| Line 45: | Line 101: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | | + | | <math>\begin{bmatrix} |
| + | 2 \\ | ||
| + | 6 \\ | ||
| + | 4 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}\in W^\perp</math> | ||
|} | |} | ||
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']] | [[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 09:57, 13 October 2017
Let Is in Explain.
| Foundations: |
|---|
| Recall that if is a subspace of then |
|
|
Solution:
| Step 1: |
|---|
| To determine whether the vector |
|
|
| is in it suffices to see if this vector is orthogonal to |
| the basis elements of |
| Notice that we have |
|
|
| Step 2: |
|---|
|
|
| Hence, we conclude |
|
|
| Final Answer: |
|---|