Difference between revisions of "031 Review Part 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 50: Line 50:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|Notice, we have
 
|-
 
|-
 
|
 
|
 +
::<math>T(\vec{e_1})=
 +
\begin{bmatrix}
 +
          5 \\
 +
          -1
 +
        \end{bmatrix},T(\vec{e_2})=
 +
\begin{bmatrix}
 +
          -2.5 \\
 +
          0.5
 +
        \end{bmatrix},T(\vec{e_3})=
 +
\begin{bmatrix}
 +
          10 \\
 +
          -2
 +
        \end{bmatrix}.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|So, the standard matrix of &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; is
 
|-
 
|-
 
|
 
|
 +
::<math>[T]=\begin{bmatrix}
 +
          5 & -2.5 &10 \\
 +
          -1 & 0.5 & -2
 +
        \end{bmatrix}</math>
 
|}
 
|}
  

Revision as of 19:56, 11 October 2017

Suppose    is a linear transformation given by the formula

(a) Find the standard matrix for  

(b) Let    Find  

(c) Is    in the range of    Explain.


Foundations:  
1. The standard matrix of a linear transformation    is given by
where    is the standard basis of  
2. A vector    is in the image of    if there exists    such that


Solution:

(a)

Step 1:  
Notice, we have
Step 2:  
So, the standard matrix of    is

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam