Difference between revisions of "031 Review Part 3, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 5: Line 5:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|The eigenvalues of a diagonal matrix are the entries on the diagonal.
 
|}
 
|}
  
Line 12: Line 12:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 1:    
+
!    
 +
|-
 +
|One example of such a matrix is
 
|-
 
|-
 
|
 
|
|}
+
::<math>A=\left[\begin{array}{ccc}  
 
+
          5 & 0 & 0\\
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
            0 & -1 & 0\\
!Step 2: &nbsp;
+
            0 & 0 & 3
 +
        \end{array}\right].</math>
 +
|-
 +
|Since &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a diagonal matrix, the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are the entries on the diagonal.
 
|-
 
|-
|
+
|Hence, the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: -4px">5,-1,3.</math>
 
|}
 
|}
  
Line 27: Line 32:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; &nbsp; &nbsp;  
+
|&nbsp;&nbsp; &nbsp; &nbsp; One example is &nbsp;<math style="vertical-align: -31px">A=\left[\begin{array}{ccc} 
 +
          5 & 0 & 0\\
 +
            0 & -1 & 0\\
 +
            0 & 0 & 3
 +
        \end{array}\right].</math>
 
|}
 
|}
 
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
 
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 20:30, 10 October 2017

Give an example of a    matrix    with eigenvalues 5,-1 and 3.


Foundations:  
The eigenvalues of a diagonal matrix are the entries on the diagonal.


Solution:

 
One example of such a matrix is
Since    is a diagonal matrix, the eigenvalues of    are the entries on the diagonal.
Hence, the eigenvalues of    are  


Final Answer:  
       One example is  

Return to Sample Exam