Difference between revisions of "031 Review Part 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
 +
|-
 +
|Recall:
 +
|-
 +
|1. To diagonalize a matrix, you need to know the eigenvalues of the matrix.
 +
|-
 +
|2. '''Diagonalization Theorem'''
 
|-
 
|-
 
|
 
|
 +
:An &nbsp;<math style="vertical-align: 0px">n\times n</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is diagonalizable if and only if &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; has &nbsp;<math style="vertical-align: 0px">n</math>&nbsp; linearly independent eigenvectors.
 +
|-
 +
|
 +
:In fact, &nbsp;<math style="vertical-align: -4px">A=PDP^{-1},</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">D</math>&nbsp; a diagonal matrix, if and only if the columns of &nbsp;<math style="vertical-align: 0px">P</math>&nbsp; are &nbsp;<math style="vertical-align: 0px">n</math>&nbsp; linearly
 +
|-
 +
|
 +
:independent eigenvectors of &nbsp;<math style="vertical-align: 0px">A.</math>&nbsp; In this case, the diagonal entries of &nbsp;<math style="vertical-align: 0px">D</math>&nbsp; are eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; that
 +
|-
 +
|
 +
:correspond, respectively , to the eigenvectors in &nbsp;<math style="vertical-align: 0px">P.</math>
 
|}
 
|}
  

Revision as of 13:19, 13 October 2017

Find a formula for    by diagonalizing the matrix.


Foundations:  
Recall:
1. To diagonalize a matrix, you need to know the eigenvalues of the matrix.
2. Diagonalization Theorem
An    matrix    is diagonalizable if and only if    has    linearly independent eigenvectors.
In fact,    with    a diagonal matrix, if and only if the columns of    are    linearly
independent eigenvectors of    In this case, the diagonal entries of    are eigenvalues of    that
correspond, respectively , to the eigenvectors in  


Solution:

Step 1:  
Step 2:  


Final Answer:  
      

Return to Sample Exam