Difference between revisions of "031 Review Part 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
 +
|-
 +
|Recall:
 +
|-
 +
|'''1.''' If the matrix &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; is identical to the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; except the entries in one of the rows of &nbsp;<math style="vertical-align: 0px">B</math>&nbsp;
 
|-
 
|-
 
|
 
|
 +
:are each equal to the corresponding entries of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; multiplied by the same scalar &nbsp;<math style="vertical-align: -4px">c,</math>&nbsp; then
 +
|-
 +
|
 +
::<math>\text{det }B=c(\text{det }A).</math> 
 +
|-
 +
|'''2.''' &nbsp;<math style="vertical-align: -5px">\text{det } (AB)=(\text{det }A)(\text{det }B)</math>
 +
|-
 +
|'''3.''' For an invertible matrix &nbsp;<math style="vertical-align: -4px">A,</math>&nbsp; since &nbsp;<math style="vertical-align: 0px">AA^{-1}=I</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">\text{det }I=1,</math>&nbsp; we have
 +
|-
 +
|
 +
::<math>\text{det }A^{-1}=\frac{1}{\text{det } A}.</math>
 
|}
 
|}
  

Revision as of 14:35, 11 October 2017

Let    and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B}   be  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6\times 6}   matrices with  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{det }A=-10}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{det }B=5.}   Use properties of determinants to compute:

(a)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{det }3A}

(b)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{det }(A^TB^{-1})}


Foundations:  
Recall:
1. If the matrix  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B}   is identical to the matrix  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}   except the entries in one of the rows of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B}  
are each equal to the corresponding entries of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}   multiplied by the same scalar  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c,}   then
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{det }B=c(\text{det }A).}
2.  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{det } (AB)=(\text{det }A)(\text{det }B)}
3. For an invertible matrix  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A,}   since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AA^{-1}=I}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{det }I=1,}   we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{det }A^{-1}=\frac{1}{\text{det } A}.}


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam