Difference between revisions of "031 Review Part 3, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
| Line 1: | Line 1: | ||
| − | <span class="exam"> | + | <span class="exam">Let <math>A=\begin{bmatrix} |
| − | + | 3 & 0 & -1 \\ | |
| − | + | 0 & 1 &-3\\ | |
| − | + | 1 & 0 & 0 | |
| − | + | \end{bmatrix}\begin{bmatrix} | |
| − | \end{bmatrix}</math> | + | 3 & 0 & 0 \\ |
| + | 0 & 4 &0\\ | ||
| + | 0 & 0 & 3 | ||
| + | \end{bmatrix}\begin{bmatrix} | ||
| + | 0 & 0 & 1 \\ | ||
| + | -3 & 1 &9\\ | ||
| + | -1 & 0 & 3 | ||
| + | \end{bmatrix}.</math> | ||
| − | + | <span class="exam">Use the Diagonalization Theorem to find the eigenvalues of <math style="vertical-align: 0px">A</math> and a basis for each eigenspace. | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | <span class="exam"> | ||
| − | |||
| − | |||
| Line 26: | Line 24: | ||
'''Solution:''' | '''Solution:''' | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| Line 59: | Line 41: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | | + | | |
| − | |||
| − | |||
|} | |} | ||
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']] | [[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 19:28, 9 October 2017
Let
Use the Diagonalization Theorem to find the eigenvalues of and a basis for each eigenspace.
| Foundations: |
|---|
Solution:
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|