Difference between revisions of "031 Review Part 3, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Consider the matrix  <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...")
 
Line 1: Line 1:
<span class="exam">Consider the matrix &nbsp;<math style="vertical-align: -31px">A=  
+
<span class="exam">Let &nbsp;<math>A=\begin{bmatrix}
    \begin{bmatrix}
+
           3 & 0 & -1 \\
           1 & -4 & 9 & -7 \\
+
          0 & 1 &-3\\
           -1 & & -4 & 1 \\
+
           1 & 0 & 0
           5 & -6 & 10 & 7
+
        \end{bmatrix}\begin{bmatrix}
         \end{bmatrix}</math>&nbsp; and assume that it is row equivalent to the matrix
+
          3 & 0 & 0 \\
 +
          0 & 4 &0\\
 +
          0 & 0 & 3
 +
        \end{bmatrix}\begin{bmatrix}
 +
          0 & 0 & 1 \\
 +
           -3 & 1 &9\\
 +
          -1 & 0 & 3
 +
         \end{bmatrix}.</math>  
  
::<math>B=   
+
<span class="exam">Use the Diagonalization Theorem to find the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and a basis for each eigenspace.
    \begin{bmatrix}
 
          1 & 0 & -1 & 5 \\
 
          0 & -2  & 5 & -6 \\
 
          0 & 0 & 0 & 0
 
        \end{bmatrix}.</math>     
 
   
 
<span class="exam">(a) List rank &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{dim Nul }A.</math>
 
 
 
<span class="exam">(b) Find bases for &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: -5px">\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>
 
  
  
Line 26: Line 24:
  
 
'''Solution:'''
 
'''Solution:'''
 
'''(a)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|}
 
 
'''(b)'''
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 59: Line 41:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;
+
|&nbsp;&nbsp; &nbsp; &nbsp;  
|-
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;  
 
 
|}
 
|}
 
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
 
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 19:28, 9 October 2017

Let  

Use the Diagonalization Theorem to find the eigenvalues of    and a basis for each eigenspace.


Foundations:  


Solution:

Step 1:  
Step 2:  


Final Answer:  
      

Return to Sample Exam