Difference between revisions of "031 Review Part 3, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam">Let <math>A=\begin{bmatrix} |
− | + | 3 & 0 & -1 \\ | |
− | + | 0 & 1 &-3\\ | |
− | + | 1 & 0 & 0 | |
− | + | \end{bmatrix}\begin{bmatrix} | |
− | \end{bmatrix}</math> | + | 3 & 0 & 0 \\ |
+ | 0 & 4 &0\\ | ||
+ | 0 & 0 & 3 | ||
+ | \end{bmatrix}\begin{bmatrix} | ||
+ | 0 & 0 & 1 \\ | ||
+ | -3 & 1 &9\\ | ||
+ | -1 & 0 & 3 | ||
+ | \end{bmatrix}.</math> | ||
− | + | <span class="exam">Use the Diagonalization Theorem to find the eigenvalues of <math style="vertical-align: 0px">A</math> and a basis for each eigenspace. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <span class="exam"> | ||
− | |||
− | |||
Line 26: | Line 24: | ||
'''Solution:''' | '''Solution:''' | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 59: | Line 41: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | | |
− | |||
− | |||
|} | |} | ||
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']] | [[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 19:28, 9 October 2017
Let
Use the Diagonalization Theorem to find the eigenvalues of and a basis for each eigenspace.
Foundations: |
---|
Solution:
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|