Difference between revisions of "031 Review Part 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Consider the matrix  <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...")
 
Line 1: Line 1:
<span class="exam">Consider the matrix &nbsp;<math style="vertical-align: -31px">A=     
+
<span class="exam">(a) Is the matrix &nbsp;<math style="vertical-align: -18px">A=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
           1 & -4 & 9 & -7 \\
+
           3 & 1 \\
          -1 & 2  & -4 & 1 \\
+
           0 & 3
           5 & -6 & 10 & 7
+
         \end{bmatrix}</math>&nbsp; diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
         \end{bmatrix}</math>&nbsp; and assume that it is row equivalent to the matrix  
+
       
 
+
<span class="exam">(b) Is the matrix &nbsp;<math style="vertical-align: -31px">A=     
::<math>B=     
 
 
     \begin{bmatrix}
 
     \begin{bmatrix}
           1 & 0 & -1 & 5 \\
+
           2 & 0 & -2 \\
           0 & -2 & 5 & -6 \\
+
           1 & 3 & 2 \\
           0 & 0 & 0 & 0
+
           0 & 0 & 3
         \end{bmatrix}.</math>     
+
         \end{bmatrix}</math>&nbsp; diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
   
 
<span class="exam">(a) List rank &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{dim Nul }A.</math>
 
 
 
<span class="exam">(b) Find bases for &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: -5px">\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>
 
  
  

Revision as of 19:21, 9 October 2017

(a) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.

(b) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.


Foundations:  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam