Difference between revisions of "031 Review Part 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 4: Line 4:
 
!Solution:    
 
!Solution:    
 
|-
 
|-
|First, we switch to the limit to <math style="vertical-align: 0px">x</math> so that we can use L'Hopital's rule.
+
|Let &nbsp;<math style="vertical-align: -20px">A=   
 +
    \begin{bmatrix}
 +
          1 & 1  \\
 +
          0 & 1
 +
        \end{bmatrix}</math>&nbsp; and &nbsp;<math style="vertical-align: -20px">B=   
 +
    \begin{bmatrix}
 +
          -1 & -1 \\
 +
          0 & -1
 +
        \end{bmatrix}.</math>&nbsp;
 
|-
 
|-
|So, we have
+
|Notice that
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
+
::<math>\text{det} A=\text{det} B=1.</math>
\displaystyle{\lim_{x \rightarrow \infty}\frac{3-2x^2}{5x^2 + x +1}} & \overset{L'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{-4x}{10x+1}}\\
+
|-
&&\\
+
|Since &nbsp;<math style="vertical-align: -6px">\text{det} A,\text{det} B\neq 0,</math>&nbsp; we know &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; are invertible.
& \overset{L'H}{=} & \displaystyle{\frac{-4}{10}}\\
+
|-
&&\\
+
|But,
& = & \displaystyle{-\frac{2}{5}}.
+
|-
\end{array}</math>
+
|
 +
::<math style="vertical-align: -31px">A+B=   
 +
    \begin{bmatrix}
 +
          0 & 0 \\
 +
          0 & 0
 +
        \end{bmatrix},</math>&nbsp;
 +
|-
 +
|which is not invertible.
 +
|-
 +
|Hence, this statement is false.
 
|}
 
|}
  
Line 21: Line 38:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; &nbsp; &nbsp; False
+
|&nbsp;&nbsp; &nbsp; &nbsp; FALSE
 
|}
 
|}
 
[[031_Review_Part_1|'''<u>Return to Sample Exam</u>''']]
 
[[031_Review_Part_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:49, 9 October 2017

True or false: If    and    are invertible    matrices, then so is  

Solution:  
Let    and   
Notice that
Since    we know    and    are invertible.
But,
 
which is not invertible.
Hence, this statement is false.
Final Answer:  
       FALSE

Return to Sample Exam