Difference between revisions of "031 Review Part 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">True or false: If all the entries of a  <math style="vertical-align: 0px">7\times 7</math>  matrix  <math style="vertical-align: 0px">A</math...")
 
Line 4: Line 4:
 
!Solution: &nbsp;  
 
!Solution: &nbsp;  
 
|-
 
|-
|First, we switch to the limit to <math style="vertical-align: 0px">x</math> so that we can use L'Hopital's rule.
+
|If all the entries of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: -4px">7,</math>&nbsp; then all the rows of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are identical.
 
|-
 
|-
|So, we have
+
|So, when you row reduce &nbsp;<math style="vertical-align: -4px">A,</math>&nbsp; it is row equivalent to a matrix &nbsp;<math style="vertical-align: -4px">B,</math>&nbsp; where &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; contains a row of zeros.
 +
|-
 +
|Then,
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
+
::<math>\text{det } B=0.</math>
\displaystyle{\lim_{x \rightarrow \infty}\frac{3-2x^2}{5x^2 + x +1}} & \overset{L'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{-4x}{10x+1}}\\
+
|-
&&\\
+
|But, &nbsp;<math style="vertical-align: -1px">\text{det }A</math>&nbsp; is a scalar multiple of &nbsp;<math style="vertical-align: -1px">\text{det }B.</math>&nbsp;
& \overset{L'H}{=} & \displaystyle{\frac{-4}{10}}\\
+
|-
&&\\
+
|So,
& = & \displaystyle{-\frac{2}{5}}.
+
|-
\end{array}</math>
+
|
 +
::<math>\text{det }A=0</math>  
 +
|-
 +
|and the statement is false.
 +
|-
 
|}
 
|}
  
Line 21: Line 27:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; &nbsp; &nbsp; False
+
|&nbsp;&nbsp; &nbsp; &nbsp; FALSE
 
|}
 
|}
 
[[031_Review_Part_1|'''<u>Return to Sample Exam</u>''']]
 
[[031_Review_Part_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 15:00, 9 October 2017

True or false: If all the entries of a    matrix    are    then    must be  

Solution:  
If all the entries of    are    then all the rows of    are identical.
So, when you row reduce    it is row equivalent to a matrix    where    contains a row of zeros.
Then,
But,    is a scalar multiple of   
So,
and the statement is false.
Final Answer:  
       FALSE

Return to Sample Exam