Difference between revisions of "031 Review Part 3"
Kayla Murray (talk | contribs) (Created page with "'''This is a sample, and is meant to represent the material usually covered in Math 9C for the final. An actual test may or may not be similar.''' '''Click on the <span class...") |
Kayla Murray (talk | contribs) |
||
Line 4: | Line 4: | ||
<div class="noautonum">__TOC__</div> | <div class="noautonum">__TOC__</div> | ||
− | == [[ | + | == [[031_Review Part 3,_Problem_1|<span class="biglink"><span style="font-size:80%"> Problem 1 </span></span>]]== |
<span class="exam">(a) Is the matrix <math style="vertical-align: -18px">A= | <span class="exam">(a) Is the matrix <math style="vertical-align: -18px">A= | ||
Line 21: | Line 21: | ||
− | == [[ | + | == [[031_Review Part 3,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == |
<span class="exam"> Find the eigenvalues and eigenvectors of the matrix <math style="vertical-align: -31px">A= | <span class="exam"> Find the eigenvalues and eigenvectors of the matrix <math style="vertical-align: -31px">A= | ||
\begin{bmatrix} | \begin{bmatrix} | ||
Line 30: | Line 30: | ||
− | == [[ | + | == [[031_Review Part 3,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == |
<span class="exam">Let <math style="vertical-align: -20px">A= | <span class="exam">Let <math style="vertical-align: -20px">A= | ||
\begin{bmatrix} | \begin{bmatrix} | ||
Line 41: | Line 41: | ||
<span class="exam">(b) Is the matrix <math style="vertical-align: 0px">A</math> diagonalizable? Explain. | <span class="exam">(b) Is the matrix <math style="vertical-align: 0px">A</math> diagonalizable? Explain. | ||
− | == [[ | + | == [[031_Review Part 3,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == |
<span class="exam"> Let <math>W=\text{Span }\Bigg\{\begin{bmatrix} | <span class="exam"> Let <math>W=\text{Span }\Bigg\{\begin{bmatrix} | ||
2 \\ | 2 \\ | ||
Line 60: | Line 60: | ||
− | == [[ | + | == [[031_Review Part 3,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == |
<span class="exam">Find a formula for <math>\begin{bmatrix} | <span class="exam">Find a formula for <math>\begin{bmatrix} | ||
1 & -6 \\ | 1 & -6 \\ | ||
Line 66: | Line 66: | ||
\end{bmatrix}^k</math> by diagonalizing the matrix. | \end{bmatrix}^k</math> by diagonalizing the matrix. | ||
− | == [[ | + | == [[031_Review Part 3,_Problem_6|<span class="biglink"><span style="font-size:80%"> Problem 6 </span>]] == |
<span class="exam"> (a) Show that if <math style="vertical-align: 0px">\vec{x}</math> is an eigenvector of the matrix <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue 2, then <math style="vertical-align: 0px">\vec{x}</math> is an eigenvector of <math style="vertical-align: -2px">A^3-A^2+I.</math> What is the corresponding eigenvalue? | <span class="exam"> (a) Show that if <math style="vertical-align: 0px">\vec{x}</math> is an eigenvector of the matrix <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue 2, then <math style="vertical-align: 0px">\vec{x}</math> is an eigenvector of <math style="vertical-align: -2px">A^3-A^2+I.</math> What is the corresponding eigenvalue? | ||
<span class="exam">(b) Show that if <math style="vertical-align: -3px">\vec{y}</math> is an eigenvector of the matrix <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue 3 and <math style="vertical-align: 0px">A</math> is invertible, then <math style="vertical-align: -3px">\vec{y}</math> is an eigenvector of <math style="vertical-align: 0px">A^{-1}.</math> What is the corresponding eigenvalue? | <span class="exam">(b) Show that if <math style="vertical-align: -3px">\vec{y}</math> is an eigenvector of the matrix <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue 3 and <math style="vertical-align: 0px">A</math> is invertible, then <math style="vertical-align: -3px">\vec{y}</math> is an eigenvector of <math style="vertical-align: 0px">A^{-1}.</math> What is the corresponding eigenvalue? | ||
− | == [[ | + | == [[031_Review Part 3,_Problem_7|<span class="biglink"><span style="font-size:80%"> Problem 7 </span>]] == |
<span class="exam">Let <math>A=\begin{bmatrix} | <span class="exam">Let <math>A=\begin{bmatrix} | ||
Line 89: | Line 89: | ||
<span class="exam">Use the Diagonalization Theorem to find the eigenvalues of <math style="vertical-align: 0px">A</math> and a basis for each eigenspace. | <span class="exam">Use the Diagonalization Theorem to find the eigenvalues of <math style="vertical-align: 0px">A</math> and a basis for each eigenspace. | ||
− | == [[ | + | == [[031_Review Part 3,_Problem_8|<span class="biglink"><span style="font-size:80%"> Problem 8 </span>]] == |
<span class="exam">Give an example of a <math style="vertical-align: 0px">3\times 3</math> matrix <math style="vertical-align: 0px">A</math> with eigenvalues 5,-1 and 3. | <span class="exam">Give an example of a <math style="vertical-align: 0px">3\times 3</math> matrix <math style="vertical-align: 0px">A</math> with eigenvalues 5,-1 and 3. | ||
− | == [[ | + | == [[031_Review Part 3,_Problem_9|<span class="biglink"><span style="font-size:80%"> Problem 9 </span>]] == |
<span class="exam">Assume <math style="vertical-align: 0px">A^2=I.</math> Find <math style="vertical-align: -1px">\text{Nul }A.</math> | <span class="exam">Assume <math style="vertical-align: 0px">A^2=I.</math> Find <math style="vertical-align: -1px">\text{Nul }A.</math> | ||
− | == [[ | + | == [[031_Review Part 3,_Problem_10|<span class="biglink"><span style="font-size:80%"> Problem 10 </span>]] == |
<span class="exam">Show that if <math style="vertical-align: 0px">\vec{x}</math> is an eigenvector of the matrix product <math style="vertical-align: 0px">AB</math> and <math style="vertical-align: -5px">B\vec{x}\ne \vec{0},</math> then <math style="vertical-align: 0px">B\vec{x}</math> is an eigenvector of <math style="vertical-align: 0px">BA.</math> | <span class="exam">Show that if <math style="vertical-align: 0px">\vec{x}</math> is an eigenvector of the matrix product <math style="vertical-align: 0px">AB</math> and <math style="vertical-align: -5px">B\vec{x}\ne \vec{0},</math> then <math style="vertical-align: 0px">B\vec{x}</math> is an eigenvector of <math style="vertical-align: 0px">BA.</math> | ||
− | == [[ | + | == [[031_Review Part 3,_Problem_11|<span class="biglink"><span style="font-size:80%"> Problem 11 </span>]] == |
<span class="exam">Suppose <math style="vertical-align: -5px">\{\vec{u},\vec{v}\}</math> is a basis of the eigenspace corresponding to the eigenvalue 0 of a <math style="vertical-align: 0px">5\times 5</math> matrix <math style="vertical-align: 0px">A.</math> | <span class="exam">Suppose <math style="vertical-align: -5px">\{\vec{u},\vec{v}\}</math> is a basis of the eigenspace corresponding to the eigenvalue 0 of a <math style="vertical-align: 0px">5\times 5</math> matrix <math style="vertical-align: 0px">A.</math> |
Revision as of 18:50, 9 October 2017
This is a sample, and is meant to represent the material usually covered in Math 9C for the final. An actual test may or may not be similar.
Click on the boxed problem numbers to go to a solution.
Problem 1
(a) Is the matrix diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
(b) Is the matrix diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
Problem 2
Find the eigenvalues and eigenvectors of the matrix
Problem 3
Let
(a) Find a basis for the eigenspace(s) of
(b) Is the matrix diagonalizable? Explain.
Problem 4
Let Is in Explain.
Problem 5
Find a formula for by diagonalizing the matrix.
Problem 6
(a) Show that if is an eigenvector of the matrix corresponding to the eigenvalue 2, then is an eigenvector of What is the corresponding eigenvalue?
(b) Show that if is an eigenvector of the matrix corresponding to the eigenvalue 3 and is invertible, then is an eigenvector of What is the corresponding eigenvalue?
Problem 7
Let
Use the Diagonalization Theorem to find the eigenvalues of and a basis for each eigenspace.
Problem 8
Give an example of a matrix with eigenvalues 5,-1 and 3.
Problem 9
Assume Find
Problem 10
Show that if is an eigenvector of the matrix product and then is an eigenvector of
Problem 11
Suppose is a basis of the eigenspace corresponding to the eigenvalue 0 of a matrix
(a) Is an eigenvector of If so, find the corresponding eigenvalue.
If not, explain why.
(b) Find the dimension of