Difference between revisions of "Product Rule and Quotient Rule"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 240: | Line 240: | ||
Calculate the derivative of <math style="vertical-align: -16px">h(x)=\frac{x^2\sin x+1}{x^2\cos x+3}.</math> | Calculate the derivative of <math style="vertical-align: -16px">h(x)=\frac{x^2\sin x+1}{x^2\cos x+3}.</math> | ||
− | + | Using the Quotient Rule, we have | |
− | + | ::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\sin x+1)'-(x^2\sin x+1)(x^2\cos x+3)'}{(x^2\cos x+3)^2}.</math> | |
− | Now, we need | + | Now, we need to use the Product Rule. So, we have |
− | |||
− | |||
− | |||
− | |||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2\cos x+3)(x^2(\sin x)'+(x^2)'\sin x)-(x^2\sin x+1)(x^2(\cos x)'+(x^2)'\cos x)}{(x^2\cos x+3)^2}}\\ |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{ | + | & = & \displaystyle{\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.} |
\end{array}</math> | \end{array}</math> | ||
So, we get | So, we get | ||
− | ::<math> | + | ::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.</math> |
== Exercise 4 == | == Exercise 4 == |
Revision as of 09:54, 4 October 2017
Introduction
Taking the derivatives of simple functions (i.e. polynomials) is easy using the power rule.
For example, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=x^3+2x^2+5x+3,} then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=3x^2+4x+5.}
But, what about more complicated functions?
For example, what is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)} when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\sin x \cos x?}
Or what about Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)} when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=\frac{x}{x+1}?}
Notice Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is a product and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)} is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives.
Product Rule
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=f(x)g(x).} Then,
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=f(x)g'(x)+f'(x)g(x).}
Quotient Rule
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=\frac{f(x)}{g(x)}.} Then,
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}.}
Warm-Up
Calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x).}
1) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=(x^2+x+1)(x^3+2x^2+4)}
Solution: |
---|
Using the Product Rule, we have |
|
Then, using the Power Rule, we have |
|
NOTE: It is not necessary to use the Product Rule to calculate the derivative of this function. |
You can distribute the terms and then use the Power Rule. |
In this case, we have |
|
Now, using the Power Rule, we get |
|
In general, calculating derivatives in this way is tedious. It would be better to use the Product Rule. |
Final Answer: |
---|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=(x^2+x+1)(3x^2+4x)+(2x+1)(x^3+2x^2+4)} |
or equivalently |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=x^5+3x^4+3x^3+6x^2+4x+4} |
2) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{x^2+x^3}{x}}
Solution: |
---|
Using the Quotient Rule, we have |
|
Then, using the Power Rule, we have |
|
NOTE: It is not necessary to use the Quotient Rule to calculate the derivative of this function. |
You can divide and then use the Power Rule. |
In this case, we have |
|
Now, using the Power Rule, we get |
|
Final Answer: |
---|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)}{x^2}} |
or equivalently |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=1+2x} |
3) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{\sin x}{\cos x}}
Solution: |
---|
Using the Quotient Rule, we get |
|
since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2 x+\cos^2 x=1} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sec x=\frac{1}{\cos x}.} |
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sin x}{\cos x}=\tan x,} we have |
|
Final Answer: |
---|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\sec^2 x} |
Exercise 1
Calculate the derivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{1}{x^2}(\csc x-4).}
First, we need to know the derivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \csc x.} Recall
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \csc x =\frac{1}{\sin x}.}
Now, using the Quotient Rule, we have
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\frac{d}{dx}(\csc x)} & = & \displaystyle{\frac{d}{dx}\bigg(\frac{1}{\sin x}\bigg)}\\ &&\\ & = & \displaystyle{\frac{\sin x (1)'-1(\sin x)'}{\sin^2 x}}\\ &&\\ & = & \displaystyle{\frac{\sin x (0)-\cos x}{\sin^2 x}}\\ &&\\ & = & \displaystyle{\frac{-\cos x}{\sin^2 x}} \\ &&\\ & = & \displaystyle{-\csc x \cot x.} \end{array}}
Using the Product Rule and Power Rule, we have
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\frac{1}{x^2}(\csc x-4)'+\bigg(\frac{1}{x^2}\bigg)'(\csc x-4)}\\ &&\\ & = & \displaystyle{\frac{1}{x^2}(-\csc x \cot x+0)+(-2x^{-3})(\csc x-4)}\\ &&\\ & = & \displaystyle{\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.} \end{array}}
So, we have
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.}
Exercise 2
Calculate the derivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=2x\sin x \sec x.}
Notice that the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)} is the product of three functions.
We start by grouping two of the functions together. So, we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=(2x\sin x)\sec x.}
Using the Product Rule, we get
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{g'(x)} & = & \displaystyle{(2x\sin x)(\sec x)'+(2x\sin x)'\sec x}\\ &&\\ & = & \displaystyle{(2x\sin x)(\tan^2 x)+(2x\sin x)'\sec x.} \end{array}}
Now, we need to use the Product Rule again. So,
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{g'(x)} & = & \displaystyle{2x\sin x\tan^2 x+(2x(\sin x)'+(2x)'\sin x)\sec x}\\ &&\\ & = & \displaystyle{2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.} \end{array}}
So, we have
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)=2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.}
But, there is another way to do this problem. Notice
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{g(x)} & = & \displaystyle{2x\sin x\sec x}\\ &&\\ & = & \displaystyle{2x\sin x\frac{1}{\cos x}}\\ &&\\ & = & \displaystyle{2x\tan x.} \end{array}}
Now, you would only need to use the Product Rule once instead of twice.
Exercise 3
Calculate the derivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=\frac{x^2\sin x+1}{x^2\cos x+3}.}
Using the Quotient Rule, we have
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=\frac{(x^2\cos x+3)(x^2\sin x+1)'-(x^2\sin x+1)(x^2\cos x+3)'}{(x^2\cos x+3)^2}.}
Now, we need to use the Product Rule. So, we have
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2\cos x+3)(x^2(\sin x)'+(x^2)'\sin x)-(x^2\sin x+1)(x^2(\cos x)'+(x^2)'\cos x)}{(x^2\cos x+3)^2}}\\ &&\\ & = & \displaystyle{\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.} \end{array}}
So, we get
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.}
Exercise 4
Calculate the derivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{e^x}{x^2\sin x}.}
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x+2.} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=dx.}
Now, we need a way of replacing Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2+4.}
If we solve for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} in our first equation, we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=u-2.}
Now, we square both sides of this last equation to get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2=(u-2)^2.}
Plugging in to our integral, we get
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int \frac{x^2+4}{x+2}~dx} & = & \displaystyle{\int \frac{(u-2)^2+4}{u}~du}\\ &&\\ & = & \displaystyle{\int \frac{u^2-4u+4+4}{u}~du}\\ &&\\ & = & \displaystyle{\int \frac{u^2-4u+8}{u}~du}\\ &&\\ & = & \displaystyle{\int u-4+\frac{8}{u}~du}\\ &&\\ & = & \displaystyle{\frac{u^2}{2}-4u+8\ln|u|+C}\\ &&\\ & = & \displaystyle{\frac{(x+2)^2}{2}-4(x+2)+8\ln|x+2|+C.}\\ \end{array}}
So, we have
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{x^2+4}{x+2}~dx=\frac{(x+2)^2}{2}-4(x+2)+8\ln|x+2|+C.}