Difference between revisions of "Product Rule and Quotient Rule"

From Grad Wiki
Jump to navigation Jump to search
Line 25: Line 25:
  
 
==Warm-Up==
 
==Warm-Up==
Evaluate the following indefinite integrals.
+
Calculate &nbsp;<math style="vertical-align: -5px">f'(x).</math>
  
'''1)''' &nbsp; <math>\int (8x+5)e^{4x^2+5x+3}~dx</math>
+
'''1)''' &nbsp; <math style="vertical-align: -7px">f(x)=(x^2+x+1)(x^3+2x^2+4)</math>
  
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
Line 56: Line 56:
 
|}
 
|}
  
'''2)''' &nbsp; <math>\int\frac{x}{\sqrt{1-2x^2}}~dx</math>
+
'''2)''' &nbsp; <math style="vertical-align: -14px">f(x)=\frac{x^2+x^3}{x}</math>
  
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
Line 83: Line 83:
 
|}
 
|}
  
'''3)''' &nbsp; <math>\int\frac{\sin(\ln x)}{x}~dx</math>
+
'''3)''' &nbsp; <math style="vertical-align: -14px">f(x)=\frac{\sin x}{\cos x}</math>
  
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
Line 107: Line 107:
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>-\cos(\ln x)+C</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>-\cos(\ln x)+C</math>
|-
 
|}
 
 
'''4)''' &nbsp; <math>\int xe^{x^2}~dx</math>
 
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
|-
 
|Let &nbsp;<math style="vertical-align: -1px">u=x^2.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -1px">du=2x~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -15px">\frac{du}{2}=x~dx.</math>&nbsp;
 
|-
 
|Plugging these into our integral, we get
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\int xe^{x^2}~dx} & = & \displaystyle{\int \frac{1}{2}e^u~du}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{2}e^u+C}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{2}e^{x^2}+C.} \\
 
\end{array}</math>
 
|-
 
|}
 
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{1}{2}e^{x^2}+C</math>
 
 
|-
 
|-
 
|}
 
|}

Revision as of 08:25, 26 September 2017

Introduction

Taking the derivatives of simple functions (i.e. polynomials) is easy using the power rule.

For example, if    then  

But, what about more complicated functions?

For example, what is    when  

Or what about    when  

Notice    is a product and    is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives.

Product Rule

Let    Then,

Quotient Rule

Let    Then,

Warm-Up

Calculate  

1)  

Solution:  
Let    Then,  
Plugging these into our integral, we get    which we know how to integrate.
So, we get
Final Answer:  
       

2)  

Solution:  
Let    Then,    Hence,   
Plugging these into our integral, we get
Final Answer:  
       

3)  

Solution:  
Let    Then,  
Plugging these into our integral, we get
Final Answer:  
       

Exercise 1

Evaluate the indefinite integral  

First, we factor out    out of the denominator.

So, we have

Now, we use  -substitution. Let  

Then,    and  

Plugging these into our integral, we get

So, we have

Exercise 2

Evaluate the indefinite integral  

Let    Then,  

Plugging these into our integral, we get

So, we have

Exercise 3

Evaluate the indefinite integral  

Here, the substitution is not obvious.

Let    Then,    and  

Now, we need a way of getting rid of    in the numerator.

Solving for    in the first equation, we get  

Plugging these into our integral, we get

So, we get

Exercise 4

Evaluate the indefinite integral  

Let    Then,  

Now, we need a way of replacing  

If we solve for    in our first equation, we get  

Now, we square both sides of this last equation to get  

Plugging in to our integral, we get

So, we have