Difference between revisions of "031 Review Problems"

From Grad Wiki
Jump to navigation Jump to search
Line 2: Line 2:
  
  
'''1.''' True or false: If all the entries of a <math>7\times 7</math> matrix <math>A</math> are <math>7,</math> then det <math>A</math> must be <math>7^7.</math>
+
'''1.''' True or false: If all the entries of a &nbsp;<math>7\times 7</math>&nbsp; matrix &nbsp;<math>A</math>&nbsp; are &nbsp;<math>7,</math>&nbsp; then &nbsp;<math>\text{det }A</math>&nbsp; must be &nbsp;<math>7^7.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 17: Line 17:
 
|}
 
|}
  
'''2.''' True or false: If a matrix <math>A^2</math> is diagonalizable, then the matrix <math>A</math> must be diagonalizable as well.
+
'''2.''' True or false: If a matrix &nbsp;<math>A^2</math>&nbsp; is diagonalizable, then the matrix &nbsp;<math>A</math>&nbsp; must be diagonalizable as well.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 32: Line 32:
 
|}
 
|}
  
'''3.''' True or false: If <math>A</math> is a <math>4\times 4</math> matrix with characteristic equation <math>\lambda(\lambda-1)(\lambda+1)(\lambda+e)=0,</math> then <math>A</math> is diagonalizable.
+
'''3.''' True or false: If &nbsp;<math>A</math>&nbsp; is a &nbsp;<math>4\times 4</math>&nbsp; matrix with characteristic equation &nbsp;<math>\lambda(\lambda-1)(\lambda+1)(\lambda+e)=0,</math>&nbsp; then &nbsp;<math>A</math>&nbsp; is diagonalizable.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 47: Line 47:
 
|}
 
|}
  
'''4.''' True or false: If <math>A</math> is invertible, then <math>A</math> is diagonalizable.
+
'''4.''' True or false: If &nbsp;<math>A</math>&nbsp; is invertible, then &nbsp;<math>A</math>&nbsp; is diagonalizable.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 62: Line 62:
 
|}
 
|}
  
'''5.''' True or false: If <math>A</math> and <math>B</math> are invertible <math>n\times n</math> matrices, then so is <math>A+B.</math>
+
'''5.''' True or false: If &nbsp;<math>A</math>&nbsp; and &nbsp;<math>B</math>&nbsp; are invertible &nbsp;<math>n\times n</math>&nbsp; matrices, then so is &nbsp;<math>A+B.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 77: Line 77:
 
|}
 
|}
  
'''6.''' True or false: If <math>A</math> is a <math>3\times 5</math> matrix and dim Nul <math>A=2,</math> then <math>A\vec{x}=\vec{b}</math> is consistent for all <math>\vec{b}</math> in <math>\mathbb{R}^3.</math>
+
'''6.''' True or false: If &nbsp;<math>A</math>&nbsp; is a &nbsp;<math>3\times 5</math>&nbsp; matrix and &nbsp;<math>\text{dim Nul }A=2,</math>&nbsp; then &nbsp;<math>A\vec{x}=\vec{b}</math>&nbsp; is consistent for all &nbsp;<math>\vec{b}</math>&nbsp; in &nbsp;<math>\mathbb{R}^3.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 92: Line 92:
 
|}
 
|}
  
'''7.''' True or false: Let <math>C=AB</math> for <math>4\times 4</math> matrices <math>A</math> and <math>B.</math> If <math>C</math> is invertible, then <math>A</math> is invertible.
+
'''7.''' True or false: Let &nbsp;<math>C=AB</math>&nbsp; for &nbsp;<math>4\times 4</math>&nbsp; matrices &nbsp;<math>A</math>&nbsp; and &nbsp;<math>B.</math>&nbsp; If &nbsp;<math>C</math>&nbsp; is invertible, then &nbsp;<math>A</math>&nbsp; is invertible.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 107: Line 107:
 
|}
 
|}
  
'''8.''' True or false: Let <math>W</math> be a subspace of <math>\mathbb{R}^4</math> and <math>\vec{v}</math> be a vector in <math>\mathbb{R}^4.</math> If <math>\vec{v}\in W</math> and <math>\vec{v}\in W^\perp,</math> then <math>\vec{v}=\vec{0}.</math>
+
'''8.''' True or false: Let &nbsp;<math>W</math>&nbsp; be a subspace of &nbsp;<math>\mathbb{R}^4</math>&nbsp; and &nbsp;<math>\vec{v}</math>&nbsp; be a vector in &nbsp;<math>\mathbb{R}^4.</math>&nbsp; If &nbsp;<math>\vec{v}\in W</math>&nbsp; and &nbsp;<math>\vec{v}\in W^\perp,</math>&nbsp; then &nbsp;<math>\vec{v}=\vec{0}.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 122: Line 122:
 
|}
 
|}
  
'''9.''' True or false: If <math>A</math> is an invertible <math>3\times 3</math> matrix, and <math>B</math> and <math>C</math> are <math>3\times 3</math> matrices such that <math>AB=AC,</math> then <math>B=C.</math>
+
'''9.''' True or false: If &nbsp;<math>A</math>&nbsp; is an invertible &nbsp;<math>3\times 3</math>&nbsp; matrix, and &nbsp;<math>B</math>&nbsp; and &nbsp;<math>C</math>&nbsp; are &nbsp;<math>3\times 3</math>&nbsp; matrices such that &nbsp;<math>AB=AC,</math>&nbsp; then &nbsp;<math>B=C.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 139: Line 139:
 
'''10.'''  
 
'''10.'''  
  
(a) Is the matrix <math>A=     
+
(a) Is the matrix &nbsp;<math>A=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
 
           3 & 1 \\
 
           3 & 1 \\
 
           0 & 3  
 
           0 & 3  
         \end{bmatrix}</math> diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
+
         \end{bmatrix}</math>&nbsp; diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
 
          
 
          
(b) Is the matrix <math>A=     
+
(b) Is the matrix &nbsp;<math>A=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
 
           2 & 0 & -2 \\
 
           2 & 0 & -2 \\
 
           1 & 3  & 2 \\
 
           1 & 3  & 2 \\
 
           0 & 0 & 3  
 
           0 & 0 & 3  
         \end{bmatrix}</math> diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
+
         \end{bmatrix}</math>&nbsp; diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 165: Line 165:
 
|}
 
|}
  
'''11.''' Find the eigenvalues and eigenvectors of the matrix <math>A=     
+
'''11.''' Find the eigenvalues and eigenvectors of the matrix &nbsp;<math>A=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
 
           1 & 1 & 1 \\
 
           1 & 1 & 1 \\
Line 185: Line 185:
 
|}
 
|}
  
'''12.''' Consider the matrix <math>A=     
+
'''12.''' Consider the matrix &nbsp;<math>A=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
 
           1 & -4 & 9 & -7 \\
 
           1 & -4 & 9 & -7 \\
 
           -1 & 2  & -4 & 1 \\
 
           -1 & 2  & -4 & 1 \\
 
           5 & -6 & 10 & 7  
 
           5 & -6 & 10 & 7  
         \end{bmatrix}</math> and assume that it is row equivalent to the matrix  
+
         \end{bmatrix}</math>&nbsp; and assume that it is row equivalent to the matrix  
  
<math>B=     
+
::<math>B=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
 
           1 & 0 & -1 & 5 \\
 
           1 & 0 & -1 & 5 \\
Line 199: Line 199:
 
         \end{bmatrix}.</math>       
 
         \end{bmatrix}.</math>       
 
      
 
      
(a) List rank <math>A</math> and dim Nul <math>A.</math>
+
(a) List rank &nbsp;<math>A</math>&nbsp; and &nbsp;<math>\text{dim Nul }A.</math>
  
(b) Find bases for Col <math>A</math> and Nul <math>A.</math> Find an example of a nonzero vector that belongs to Col <math>A,</math> as well as an example of a nonzero vector that belongs to Nul <math>A.</math>
+
(b) Find bases for &nbsp;<math>\text{Col }A</math>&nbsp; and &nbsp;<math>\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math>\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math>\text{Nul }A.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 218: Line 218:
 
'''13.''' Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?
 
'''13.''' Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?
  
<math>\begin{bmatrix}
+
::<math>\begin{bmatrix}
 
           1  \\
 
           1  \\
 
           0 \\
 
           0 \\
Line 253: Line 253:
  
 
'''14.''' Let   
 
'''14.''' Let   
<math>B=     
+
&nbsp;<math>B=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
 
           1 & -2 & 3 & 4\\
 
           1 & -2 & 3 & 4\\
Line 262: Line 262:
 
  </math>
 
  </math>
 
    
 
    
(a) Is <math>B</math> invertible? Explain.
+
(a) Is &nbsp;<math>B</math>&nbsp; invertible? Explain.
  
(b) Define a linear transformation <math>T</math> by the formula <math>T(\vec{x})=B\vec{x}.</math> Is <math>T</math> onto? Explain.
+
(b) Define a linear transformation &nbsp;<math>T</math>&nbsp; by the formula &nbsp;<math>T(\vec{x})=B\vec{x}.</math>&nbsp; Is &nbsp;<math>T</math>&nbsp; onto? Explain.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 279: Line 279:
 
|}
 
|}
  
'''15.''' Suppose <math>T</math> is a linear transformation given by the formula  
+
'''15.''' Suppose &nbsp;<math>T</math>&nbsp; is a linear transformation given by the formula  
  
<math>T\Bigg(
+
::<math>T\Bigg(
 
\begin{bmatrix}
 
\begin{bmatrix}
 
           x_1 \\
 
           x_1 \\
Line 293: Line 293:
 
         \end{bmatrix}</math>
 
         \end{bmatrix}</math>
 
          
 
          
(a) Find the standard matrix for <math>T.</math>
+
(a) Find the standard matrix for &nbsp;<math>T.</math>
 
          
 
          
(b) Let <math>\vec{u}=7\vec{e_1}-4\vec{e_2}.</math> Find <math>T(\vec{u}).</math>
+
(b) Let &nbsp;<math>\vec{u}=7\vec{e_1}-4\vec{e_2}.</math>&nbsp; Find &nbsp;<math>T(\vec{u}).</math>
 
          
 
          
(c) Is <math>\begin{bmatrix}
+
(c) Is &nbsp;<math>\begin{bmatrix}
 
           -1 \\
 
           -1 \\
 
           3  
 
           3  
         \end{bmatrix}</math> in the range of <math>T?</math> Explain.
+
         \end{bmatrix}</math>&nbsp; in the range of &nbsp;<math>T?</math>&nbsp; Explain.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 315: Line 315:
 
|}
 
|}
  
'''16.''' Let <math>A</math> and <math>B</math> be <math>6\times 6</math> matrices with det <math>A=-10</math> and det <math>B=5.</math> Use properties of  
+
'''16.''' Let &nbsp;<math>A</math>&nbsp; and &nbsp;<math>B</math>&nbsp; be &nbsp;<math>6\times 6</math>&nbsp; matrices with &nbsp;<math>\text{det }A=-10</math>&nbsp; and &nbsp;<math>\text{det }B=5.</math>&nbsp; Use properties of determinants to compute:
  
determinants to compute:
+
(a) &nbsp;<math>\text{det }3A</math>
  
(a) det <math>3A</math>
+
(b) &nbsp;<math>\text{det }(A^TB^{-1})</math>
 
 
(b) det <math>(A^TB^{-1})</math>
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 336: Line 334:
 
|}
 
|}
  
'''17.''' Let <math>A=     
+
'''17.''' Let &nbsp;<math>A=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
 
           5 & 1 \\
 
           5 & 1 \\
Line 342: Line 340:
 
         \end{bmatrix}.</math>
 
         \end{bmatrix}.</math>
  
(a) Find a basis for the eigenspace(s) of <math>A.</math>
+
(a) Find a basis for the eigenspace(s) of &nbsp;<math>A.</math>
  
(b) Is the matrix <math>A</math> diagonalizable? Explain.
+
(b) Is the matrix &nbsp;<math>A</math>&nbsp; diagonalizable? Explain.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 359: Line 357:
 
|}
 
|}
  
'''18.''' Let <math>\vec{v}=\begin{bmatrix}
+
'''18.''' Let &nbsp;<math>\vec{v}=\begin{bmatrix}
 
           -1 \\
 
           -1 \\
 
           3 \\
 
           3 \\
 
           0
 
           0
         \end{bmatrix}</math> and <math>\vec{y}=\begin{bmatrix}
+
         \end{bmatrix}</math>&nbsp; and &nbsp;<math>\vec{y}=\begin{bmatrix}
 
           2 \\
 
           2 \\
 
           0 \\
 
           0 \\
Line 369: Line 367:
 
         \end{bmatrix}.</math>
 
         \end{bmatrix}.</math>
 
          
 
          
(a) Find a unit vector in the direction of <math>\vec{v}.</math>
+
(a) Find a unit vector in the direction of &nbsp;<math>\vec{v}.</math>
 
          
 
          
(b) Find the distance between <math>\vec{v}</math> and <math>\vec{y}.</math>
+
(b) Find the distance between &nbsp;<math>\vec{v}</math>&nbsp; and &nbsp;<math>\vec{y}.</math>
 
          
 
          
(c) Let <math>L=</math>Span<math>\{\vec{v}\}.</math> Compute the orthogonal projection of <math>\vec{y}</math> onto <math>L.</math>
+
(c) Let &nbsp;<math>L=\text{Span }\{\vec{v}\}.</math>&nbsp; Compute the orthogonal projection of &nbsp;<math>\vec{y}</math>&nbsp; onto &nbsp;<math>L.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 388: Line 386:
 
|}
 
|}
  
'''19.''' Let <math>W=</math>Span<math>\Bigg\{\begin{bmatrix}
+
'''19.''' Let &nbsp;<math>W=\text{Span }\Bigg\{\begin{bmatrix}
 
           2 \\
 
           2 \\
 
           0 \\
 
           0 \\
Line 398: Line 396:
 
           0 \\
 
           0 \\
 
           0
 
           0
         \end{bmatrix}\Bigg\}.</math> Is <math>\begin{bmatrix}
+
         \end{bmatrix}\Bigg\}.</math>&nbsp; Is &nbsp;<math>\begin{bmatrix}
 
           2 \\
 
           2 \\
 
           6 \\
 
           6 \\
 
           4 \\
 
           4 \\
 
           0
 
           0
         \end{bmatrix}</math> in <math>W^\perp?</math> Explain.
+
         \end{bmatrix}</math>&nbsp; in &nbsp;<math>W^\perp?</math>&nbsp; Explain.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 420: Line 418:
 
'''20.'''  
 
'''20.'''  
  
(a) Let <math>T:\mathbb{R}^2\rightarrow \mathbb{R}^2</math> be a transformation given by  
+
(a) Let &nbsp;<math>T:\mathbb{R}^2\rightarrow \mathbb{R}^2</math>&nbsp; be a transformation given by  
  
<math>T\bigg(
+
::<math>T\bigg(
 
\begin{bmatrix}
 
\begin{bmatrix}
 
           x \\
 
           x \\
Line 433: Line 431:
 
         \end{bmatrix}.</math>
 
         \end{bmatrix}.</math>
  
Determine whether <math>T</math> is a linear transformation. Explain.
+
Determine whether &nbsp;<math>T</math>&nbsp; is a linear transformation. Explain.
  
(b) Let <math>A=     
+
(b) Let &nbsp;<math>A=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
 
           1 & -3 & 0 \\
 
           1 & -3 & 0 \\
 
           -4 & 1 &1
 
           -4 & 1 &1
         \end{bmatrix}</math> and <math>B=     
+
         \end{bmatrix}</math>&nbsp; and &nbsp;<math>B=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
 
           2 & 1\\
 
           2 & 1\\
 
           1 & 0 \\
 
           1 & 0 \\
 
           -1 & 1
 
           -1 & 1
         \end{bmatrix}.</math> Find <math>AB,</math> <math>BA^T</math> and <math>A-B^T.</math>
+
         \end{bmatrix}.</math>&nbsp; Find &nbsp;<math>AB,</math>&nbsp; &nbsp;<math>BA^T</math>&nbsp; and &nbsp;<math>A-B^T.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 459: Line 457:
 
|}
 
|}
  
'''21.''' Let <math>A=     
+
'''21.''' Let &nbsp;<math>A=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
 
           1 & 3 & 8 \\
 
           1 & 3 & 8 \\
 
           2 & 4 &11\\
 
           2 & 4 &11\\
 
           1 & 2 & 5
 
           1 & 2 & 5
         \end{bmatrix}.</math> Find <math>A^{-1}</math> if possible.
+
         \end{bmatrix}.</math>&nbsp; Find &nbsp;<math>A^{-1}</math>&nbsp; if possible.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 479: Line 477:
 
|}
 
|}
  
'''22.''' Find a formula for <math>\begin{bmatrix}
+
'''22.''' Find a formula for &nbsp;<math>\begin{bmatrix}
 
           1 & -6  \\
 
           1 & -6  \\
 
           2 & -6  
 
           2 & -6  
         \end{bmatrix}^k</math> by diagonalizing the matrix.
+
         \end{bmatrix}^k</math>&nbsp; by diagonalizing the matrix.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 499: Line 497:
 
'''23.'''  
 
'''23.'''  
  
(a) Show that if <math>\vec{x}</math> is an eigenvector of the matrix <math>A</math> corresponding to the eigenvalue 2, then <math>\vec{x}</math> is an eigenvector of <math>A^3-A^2+I.</math> What is the corresponding eigenvalue?
+
(a) Show that if &nbsp;<math>\vec{x}</math>&nbsp; is an eigenvector of the matrix &nbsp;<math>A</math>&nbsp; corresponding to the eigenvalue 2, then &nbsp;<math>\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math>A^3-A^2+I.</math>&nbsp; What is the corresponding eigenvalue?
  
(b) Show that if <math>\vec{y}</math> is an eigenvector of the matrix <math>A</math> corresponding to the eigenvalue 3 and <math>A</math> is invertible, then <math>\vec{y}</math> is an eigenvector of <math>A^{-1}.</math> What is the corresponding eigenvalue?
+
(b) Show that if &nbsp;<math>\vec{y}</math>&nbsp; is an eigenvector of the matrix &nbsp;<math>A</math>&nbsp; corresponding to the eigenvalue 3 and &nbsp;<math>A</math>&nbsp; is invertible, then &nbsp;<math>\vec{y}</math>&nbsp; is an eigenvector of &nbsp;<math>A^{-1}.</math>&nbsp; What is the corresponding eigenvalue?
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 516: Line 514:
 
|}
 
|}
  
'''24.''' Let <math>A=\begin{bmatrix}
+
'''24.''' Let &nbsp;<math>A=\begin{bmatrix}
 
           3 & 0 & -1 \\
 
           3 & 0 & -1 \\
 
           0 & 1 &-3\\
 
           0 & 1 &-3\\
Line 530: Line 528:
 
         \end{bmatrix}.</math>  
 
         \end{bmatrix}.</math>  
  
Use the Diagonalization Theorem to find the eigenvalues of <math>A</math> and a basis for each eigenspace.
+
Use the Diagonalization Theorem to find the eigenvalues of &nbsp;<math>A</math>&nbsp; and a basis for each eigenspace.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 545: Line 543:
 
|}
 
|}
  
'''25.''' Give an example of a <math>3\times 3</math> matrix <math>A</math> with eigenvalues 5,-1 and 3.
+
'''25.''' Give an example of a &nbsp;<math>3\times 3</math>&nbsp; matrix &nbsp;<math>A</math>&nbsp; with eigenvalues 5,-1 and 3.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 560: Line 558:
 
|}
 
|}
  
'''26.''' Assume <math>A^2=I.</math> Find Nul <math>A.</math>
+
'''26.''' Assume &nbsp;<math>A^2=I.</math>&nbsp; Find &nbsp;<math>\text{Nul }A.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 575: Line 573:
 
|}
 
|}
  
'''27.''' If <math>A</math> is an <math>n\times n</math> matrix such that <math>AA^T=I,</math> what are the possible values of det <math>A?</math>
+
'''27.''' If &nbsp;<math>A</math>&nbsp; is an &nbsp;<math>n\times n</math>&nbsp; matrix such that &nbsp;<math>AA^T=I,</math>&nbsp; what are the possible values of &nbsp;<math>\text{det }A?</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 590: Line 588:
 
|}
 
|}
  
'''28.''' Show that if <math>\vec{x}</math> is an eigenvector of the matrix product <math>AB</math> and <math>B\vec{x}\ne \vec{0},</math> then <math>B\vec{x}</math> is an eigenvector of <math>BA.</math>
+
'''28.''' Show that if &nbsp;<math>\vec{x}</math>&nbsp; is an eigenvector of the matrix product &nbsp;<math>AB</math>&nbsp; and &nbsp;<math>B\vec{x}\ne \vec{0},</math>&nbsp; then &nbsp;<math>B\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math>BA.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 607: Line 605:
 
'''29.'''  
 
'''29.'''  
  
(a) Suppose a <math>6\times 8</math> matrix <math>A</math> has 4 pivot columns. What is dim Nul <math>A?</math> Is Col <math>A=\mathbb{R}^4?</math> Why or why not?
+
(a) Suppose a &nbsp;<math>6\times 8</math>&nbsp; matrix &nbsp;<math>A</math>&nbsp; has 4 pivot columns. What is &nbsp;<math>\text{dim Nul }A?</math>&nbsp; Is &nbsp;<math>\text{Col }A=\mathbb{R}^4?</math>&nbsp; Why or why not?
  
(b) If <math>A</math> is a <math>7\times 5</math> matrix, what is the smallest possible dimension of Nul <math>A?</math>
+
(b) If &nbsp;<math>A</math>&nbsp; is a &nbsp;<math>7\times 5</math>&nbsp; matrix, what is the smallest possible dimension of &nbsp;<math>\text{Nul }A?</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 626: Line 624:
 
'''30.''' Consider the following system of equations.
 
'''30.''' Consider the following system of equations.
  
<math>x_1+kx_2=1</math>
+
::<math>x_1+kx_2=1</math>
  
<math>3x_1+5x_2=2k</math>
+
::<math>3x_1+5x_2=2k</math>
  
Find all real values of <math>k</math> such that the system has only one solution.
+
Find all real values of &nbsp;<math>k</math>&nbsp; such that the system has only one solution.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 645: Line 643:
 
|}
 
|}
  
'''31.''' Suppose <math>\{\vec{u},\vec{v}\}</math> is a basis of the eigenspace corresponding to the eigenvalue 0 of a <math>5\times 5</math> matrix <math>A.</math>
+
'''31.''' Suppose &nbsp;<math>\{\vec{u},\vec{v}\}</math>&nbsp; is a basis of the eigenspace corresponding to the eigenvalue 0 of a &nbsp;<math>5\times 5</math>&nbsp; matrix &nbsp;<math>A.</math>
  
(a) Is <math>\vec{w}=\vec{u}-2\vec{v}</math> an eigenvector of <math>A?</math> If so, find the corresponding eigenvalue.  
+
(a) Is &nbsp;<math>\vec{w}=\vec{u}-2\vec{v}</math>&nbsp; an eigenvector of &nbsp;<math>A?</math>&nbsp; If so, find the corresponding eigenvalue.  
  
 
If not, explain why.
 
If not, explain why.
  
(b) Find the dimension of Col <math>A.</math>
+
(b) Find the dimension of &nbsp;<math>\text{Col }A.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 11:33, 25 August 2017

This is a list of sample problems and is meant to represent the material usually covered in Math 31. An actual test may or may not be similar.


1. True or false: If all the entries of a    matrix    are    then    must be  

Solution:  
Final Answer:  

2. True or false: If a matrix    is diagonalizable, then the matrix    must be diagonalizable as well.

Solution:  
Final Answer:  

3. True or false: If    is a    matrix with characteristic equation    then    is diagonalizable.

Solution:  
Final Answer:  

4. True or false: If    is invertible, then    is diagonalizable.

Solution:  
Final Answer:  

5. True or false: If    and    are invertible    matrices, then so is  

Solution:  
Final Answer:  

6. True or false: If    is a    matrix and    then    is consistent for all    in  

Solution:  
Final Answer:  

7. True or false: Let    for    matrices    and    If    is invertible, then    is invertible.

Solution:  
Final Answer:  

8. True or false: Let    be a subspace of    and    be a vector in    If    and    then  

Solution:  
Final Answer:  

9. True or false: If    is an invertible    matrix, and    and    are    matrices such that    then  

Solution:  
Final Answer:  

10.

(a) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.

(b) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.

Solution:  
Final Answer:  

11. Find the eigenvalues and eigenvectors of the matrix  

Solution:  
Final Answer:  

12. Consider the matrix    and assume that it is row equivalent to the matrix

(a) List rank    and  

(b) Find bases for    and    Find an example of a nonzero vector that belongs to    as well as an example of a nonzero vector that belongs to  

Solution:  
Final Answer:  

13. Find the dimension of the subspace spanned by the given vectors. Are these vectors linearly independent?

Solution:  
Final Answer:  

14. Let  

(a) Is    invertible? Explain.

(b) Define a linear transformation    by the formula    Is    onto? Explain.

Solution:  
Final Answer:  

15. Suppose    is a linear transformation given by the formula

(a) Find the standard matrix for  

(b) Let    Find  

(c) Is    in the range of    Explain.

Solution:  
Final Answer:  

16. Let    and    be    matrices with    and    Use properties of determinants to compute:

(a)  

(b)  

Solution:  
Final Answer:  

17. Let  

(a) Find a basis for the eigenspace(s) of  

(b) Is the matrix    diagonalizable? Explain.

Solution:  
Final Answer:  

18. Let    and  

(a) Find a unit vector in the direction of  

(b) Find the distance between    and  

(c) Let    Compute the orthogonal projection of    onto  

Solution:  
Final Answer:  

19. Let    Is    in    Explain.

Solution:  
Final Answer:  

20.

(a) Let    be a transformation given by

Determine whether    is a linear transformation. Explain.

(b) Let    and    Find       and  

Solution:  
Final Answer:  

21. Let    Find    if possible.

Solution:  
Final Answer:  

22. Find a formula for    by diagonalizing the matrix.

Solution:  
Final Answer:  

23.

(a) Show that if    is an eigenvector of the matrix    corresponding to the eigenvalue 2, then    is an eigenvector of    What is the corresponding eigenvalue?

(b) Show that if    is an eigenvector of the matrix    corresponding to the eigenvalue 3 and    is invertible, then    is an eigenvector of    What is the corresponding eigenvalue?

Solution:  
Final Answer:  

24. Let  

Use the Diagonalization Theorem to find the eigenvalues of    and a basis for each eigenspace.

Solution:  
Final Answer:  

25. Give an example of a    matrix    with eigenvalues 5,-1 and 3.

Solution:  
Final Answer:  

26. Assume    Find  

Solution:  
Final Answer:  

27. If    is an    matrix such that    what are the possible values of  

Solution:  
Final Answer:  

28. Show that if    is an eigenvector of the matrix product    and    then    is an eigenvector of  

Solution:  
Final Answer:  

29.

(a) Suppose a    matrix    has 4 pivot columns. What is    Is    Why or why not?

(b) If    is a    matrix, what is the smallest possible dimension of  

Solution:  
Final Answer:  

30. Consider the following system of equations.

Find all real values of    such that the system has only one solution.

Solution:  
Final Answer:  

31. Suppose    is a basis of the eigenspace corresponding to the eigenvalue 0 of a    matrix  

(a) Is    an eigenvector of    If so, find the corresponding eigenvalue.

If not, explain why.

(b) Find the dimension of  

Solution:  
Final Answer: