Difference between revisions of "009A Sample Final 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
 
Line 7: Line 7:
 
<span class="exam">(c) &nbsp;<math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}</math>
 
<span class="exam">(c) &nbsp;<math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}</math>
  
 +
<hr>
 +
[[009A Sample Final 3, Problem 1 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
| '''1.''' If &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow a} g(x)\neq 0,</math>&nbsp; we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math>
 
|-
 
| '''2.''' &nbsp;<math style="vertical-align: -14px">\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math>
 
|}
 
  
 +
[[009A Sample Final 3, Problem 1 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''Solution:'''
 
  
'''(a)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We begin by noticing that we plug in &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; into
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{\sin(5x)}{1-\sqrt{1-x}},</math>
 
|-
 
|we get &nbsp; <math style="vertical-align: -12px">\frac{0}{0}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we multiply the numerator and denominator by the conjugate of the denominator.
 
|-
 
|Hence, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 0} \frac{\sin(5x)}{1-\sqrt{1-x}}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(5x)}{1-\sqrt{1-x}} \bigg(\frac{1+\sqrt{1-x}}{1+\sqrt{1-x}}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(5x)(1+\sqrt{1-x})}{x}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(5x)}{x}(1+\sqrt{1-x})}\\
 
&&\\
 
& = & \displaystyle{\bigg(\lim_{x\rightarrow 0} \frac{\sin(5x)}{x}\bigg) \lim_{x\rightarrow 0}(1+\sqrt{1-x})}\\
 
&&\\
 
& = & \displaystyle{\bigg(5\lim_{x\rightarrow 0} \frac{\sin(5x)}{5x}\bigg) (2)}\\
 
&&\\
 
& = & \displaystyle{5(1)(2)}\\
 
&&\\
 
& = & \displaystyle{10.}
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Since &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow 8} 3 =3\ne 0,</math>
 
|-
 
|we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{-2} & = & \displaystyle{\lim _{x\rightarrow 8} \bigg[\frac{xf(x)}{3}\bigg]}\\
 
&&\\
 
& = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow 8} xf(x)}}{\displaystyle{\lim_{x\rightarrow 8} 3}}}\\
 
&&\\
 
& = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow 8} xf(x)}}{3}.}
 
\end{array}</math>
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|If we multiply both sides of the last equation by &nbsp;<math>3,</math>&nbsp; we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>-6=\lim_{x\rightarrow 8} xf(x).</math>
 
|-
 
|Now, using properties of limits, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{-6} & = & \displaystyle{\bigg(\lim_{x\rightarrow 8} x\bigg)\bigg(\lim_{x\rightarrow 8}f(x)\bigg)}\\
 
&&\\
 
& = & \displaystyle{8\lim_{x\rightarrow 8} f(x).}\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Solving for &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow 8} f(x)</math>&nbsp; in the last equation,
 
|-
 
|we get
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math> \lim_{x\rightarrow 8} f(x)=-\frac{3}{4}.</math>
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we write
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}\frac{\big(\frac{1}{x^3}\big)}{\big(\frac{1}{x^3}\big)}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9-\frac{1}{x^5}}}{3+\frac{4}{x^2}}.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}} & = & \displaystyle{\frac{\lim_{x\rightarrow -\infty} \sqrt{9-\frac{1}{x^5}}}{\lim_{x\rightarrow -\infty}3+\frac{4}{x^2}}}\\
 
&&\\
 
& = & \displaystyle{\frac{\sqrt{9}}{3}}\\
 
&&\\
 
& = & \displaystyle{1.}
 
\end{array}</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math>10</math>
 
|-
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>-\frac{3}{4}</math>
 
|-
 
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp; <math>1</math>
 
|}
 
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:32, 2 December 2017

Find each of the following limits if it exists. If you think the limit does not exist provide a reason.

(a)  

(b)    given that  

(c)  


Solution


Detailed Solution


Return to Sample Exam