Difference between revisions of "009B Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 105: Line 105:
 
|Now, we have &nbsp;<math style="vertical-align: -14px">S=\int_0^{1}2\pi x \sqrt{1+4x^2}~dx.</math>
 
|Now, we have &nbsp;<math style="vertical-align: -14px">S=\int_0^{1}2\pi x \sqrt{1+4x^2}~dx.</math>
 
|-
 
|-
|We proceed by using trig substitution.  
+
|We proceed by &nbsp;<math>u</math>-substitution.  
 
|-
 
|-
|Let &nbsp;<math style="vertical-align: -13px">x=\frac{1}{2}\tan \theta.</math>&nbsp; Then, &nbsp;<math style="vertical-align:  -12px">dx=\frac{1}{2}\sec^2\theta \,d\theta.</math>
+
|Let &nbsp;<math style="vertical-align: -2px">u=1+4x^2.</math> &nbsp;  
 
|-
 
|-
|So, we have
+
|Then, &nbsp; <math style="vertical-align: 0px">du=8xdx</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">\frac{du}{8}=xdx.</math>
 
|-
 
|-
|
+
|Since the integral is a definite integral, we need to change the bounds of integration.  
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\int 2\pi x \sqrt{1+4x^2}~dx} & = & \displaystyle{\int 2\pi \bigg(\frac{1}{2}\tan \theta\bigg)\sqrt{1+\tan^2\theta}\bigg(\frac{1}{2}\sec^2\theta\bigg) d\theta}\\
 
&&\\
 
& = & \displaystyle{\int \frac{\pi}{2} \tan \theta \sec \theta \sec^2\theta d\theta}.\\
 
\end{array}</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
 
|-
 
|-
|Now, we use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.
+
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -4px">u=1+4x^2,</math>&nbsp; we get
 
|-
 
|-
|Let &nbsp;<math style="vertical-align: 0px">u=\sec \theta.</math>&nbsp; Then, &nbsp;<math style="vertical-align: -1px">du=\sec \theta \tan \theta \,d\theta.</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">u_1=1+4(0)^2=1</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">u_2=1+4(1)^2=5.</math>
 
|-
 
|-
|So, the integral becomes
+
|Thus, the integral becomes
 
|-
 
|-
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
\displaystyle{\int 2\pi x \sqrt{1+4x^2}~dx} & = & \displaystyle{\int \frac{\pi}{2}u^2du}\\
+
S& = & \displaystyle{\int_1^5 \frac{2\pi}{8} \sqrt{u}~du}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{\pi}{6}u^3+C}\\
+
& = & \displaystyle{\frac{\pi}{4} \int_1^5 u^{\frac{1}{2}}~du.}
&&\\
 
& = & \displaystyle{\frac{\pi}{6}\sec^3\theta+C}\\
 
&&\\
 
& = & \displaystyle{\frac{\pi}{6}(\sqrt{1+4x^2})^3+C}.\\
 
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 4: &nbsp;
+
!Step 3: &nbsp;
 
|-
 
|-
|We started with a definite integral. So, using Step 2 and 3, we have
+
|Now, we integrate to get
 
|-
 
|-
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
S & = & \displaystyle{\int_0^1 2\pi x \sqrt{1+4x^2}~dx}\\
+
\displaystyle{S} & = & \displaystyle{\frac{\pi}{4}\bigg(\frac{2}{3}u^{\frac{3}{2}}\bigg)\bigg|_{1}^{5}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{\pi}{6}(\sqrt{1+4x^2})^3}\bigg|_0^1\\
+
& = & \displaystyle{\frac{\pi}{6}u^{\frac{3}{2}}\bigg|_{1}^{5}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{\pi(\sqrt{5})^3}{6}-\frac{\pi}{6}}\\
+
& = & \displaystyle{\frac{\pi}{6}(5)^{\frac{3}{2}}-\frac{\pi}{6}(1)^{\frac{3}{2}}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{\pi}{6}(5\sqrt{5}-1)}.\\
 
& = & \displaystyle{\frac{\pi}{6}(5\sqrt{5}-1)}.\\

Revision as of 16:58, 20 May 2017

(a) Find the length of the curve

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\ln (\cos x),~~~0\leq x \leq \frac{\pi}{3}} .

(b) The curve

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=1-x^2,~~~0\leq x \leq 1}

is rotated about the  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} -axis. Find the area of the resulting surface.

Foundations:  
1. The formula for the length    of a curve    where    is

       

2. Recall
       
3. The surface area    of a function    rotated about the  -axis is given by

         where


Solution:

(a)

Step 1:  
First, we calculate  
Since  
       
Using the formula given in the Foundations section, we have

       

Step 2:  
Now, we have

       

Step 3:  
Finally,

       

(b)

Step 1:  
We start by calculating  
Since  
       
Using the formula given in the Foundations section, we have

       

Step 2:  
Now, we have  
We proceed by  -substitution.
Let    
Then,     and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{du}{8}=xdx.}
Since the integral is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=1+4x^2,}   we get
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_1=1+4(0)^2=1}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_2=1+4(1)^2=5.}
Thus, the integral becomes

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} S& = & \displaystyle{\int_1^5 \frac{2\pi}{8} \sqrt{u}~du}\\ &&\\ & = & \displaystyle{\frac{\pi}{4} \int_1^5 u^{\frac{1}{2}}~du.} \end{array}}

Step 3:  
Now, we integrate to get

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{S} & = & \displaystyle{\frac{\pi}{4}\bigg(\frac{2}{3}u^{\frac{3}{2}}\bigg)\bigg|_{1}^{5}}\\ &&\\ & = & \displaystyle{\frac{\pi}{6}u^{\frac{3}{2}}\bigg|_{1}^{5}}\\ &&\\ & = & \displaystyle{\frac{\pi}{6}(5)^{\frac{3}{2}}-\frac{\pi}{6}(1)^{\frac{3}{2}}}\\ &&\\ & = & \displaystyle{\frac{\pi}{6}(5\sqrt{5}-1)}.\\ \end{array}}


Final Answer:  
    (a)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln (2+\sqrt{3})}
    (b)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\pi}{6}(5\sqrt{5}-1)}

Return to Sample Exam