|
|
| Line 6: |
Line 6: |
| | | | |
| | <span class="exam">(c) Evaluate <math style="vertical-align: -20px">\lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x) </math> | | <span class="exam">(c) Evaluate <math style="vertical-align: -20px">\lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x) </math> |
| | + | <hr> |
| | | | |
| | + | (insert picture of handwritten solution) |
| | | | |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| + | [[009A Sample Midterm 2, Problem 1 Detailed Solution|'''<u>Detailed Solution for this Problem</u>''']] |
| − | !Foundations:
| |
| − | |-
| |
| − | |Recall | |
| − | |-
| |
| − | | <math>\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math>
| |
| − | |}
| |
| | | | |
| − |
| |
| − | '''Solution:'''
| |
| − |
| |
| − | '''(a)'''
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 1:
| |
| − | |-
| |
| − | |We begin by noticing that we plug in <math style="vertical-align: 0px">x=2</math> into
| |
| − | |-
| |
| − | | <math>\frac{\sqrt{x^2+12}-4}{x-2},</math>
| |
| − | |-
| |
| − | |we get <math style="vertical-align: -12px">\frac{0}{0}.</math>
| |
| − | |}
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 2:
| |
| − | |-
| |
| − | |Now, we multiply the numerator and denominator by the conjugate of the numerator.
| |
| − | |-
| |
| − | |Hence, we have
| |
| − | |-
| |
| − | | <math>\begin{array}{rcl}
| |
| − | \displaystyle{\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}} & = & \displaystyle{\lim_{x\rightarrow 2} \frac{(\sqrt{x^2+12}-4)}{(x-2)}\frac{(\sqrt{x^2+12}+4)}{(\sqrt{x^2+12}+4)}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\lim_{x\rightarrow 2} \frac{(x^2+12)-16}{(x-2)(\sqrt{x^2+12}+4)}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\lim_{x\rightarrow 2} \frac{x^2-4}{(x-2)(\sqrt{x^2+12}+4)}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\lim_{x\rightarrow 2} \frac{(x-2)(x+2)}{(x-2)(\sqrt{x^2+12}+4)}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\lim_{x\rightarrow 2} \frac{x+2}{\sqrt{x^2+12}+4}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\frac{4}{8}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\frac{1}{2}.}
| |
| − | \end{array}</math>
| |
| − | |}
| |
| − |
| |
| − | '''(b)'''
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 1:
| |
| − | |-
| |
| − | |First, we write
| |
| − | |-
| |
| − | | <math>\begin{array}{rcl}
| |
| − | \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{x} \frac{x}{\sin(7x)}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\lim_{x\rightarrow 0} \frac{3}{7} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}.}
| |
| − | \end{array}</math>
| |
| − | |}
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 2:
| |
| − | |-
| |
| − | |Now, we have
| |
| − | |-
| |
| − | |
| |
| − | <math>\begin{array}{rcl}
| |
| − | \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\frac{3}{7}\bigg(\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\bigg)\bigg(\lim_{x\rightarrow 0} \frac{7x}{\sin(7x)}\bigg)}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\frac{3}{7} (1)(1)}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\frac{3}{7}.}
| |
| − | \end{array}</math>
| |
| − | |}
| |
| − |
| |
| − | '''(c)'''
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 1:
| |
| − | |-
| |
| − | |We begin by looking at the graph of <math style="vertical-align: -5px">y=\tan(x),</math>
| |
| − | |-
| |
| − | |which is displayed below.
| |
| − | |-
| |
| − | |(Insert graph)
| |
| − | |}
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 2:
| |
| − | |-
| |
| − | |We are taking a left hand limit. So, we approach <math style="vertical-align: -13px">x=\frac{\pi}{2}</math> from the left.
| |
| − | |-
| |
| − | |If we look at the graph from the left of <math style="vertical-align: -13px">x=\frac{\pi}{2}</math> and go towards <math style="vertical-align: -13px">\frac{\pi}{2},</math>
| |
| − | |-
| |
| − | |we see that <math style="vertical-align: -5px">\tan(x)</math> goes to <math style="vertical-align: -2px">\infty.</math>
| |
| − | |-
| |
| − | |Therefore,
| |
| − | |-
| |
| − | | <math>\lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x)=\infty.</math>
| |
| − | |}
| |
| − |
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Final Answer:
| |
| − | |-
| |
| − | | '''(a)''' <math>\frac{1}{2}</math>
| |
| − | |-
| |
| − | | '''(b)''' <math>\frac{3}{7}</math>
| |
| − | |-
| |
| − | | '''(c)''' <math>\infty</math>
| |
| − | |}
| |
| | [[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | | [[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Evaluate the following limits.
(a) Find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}}
(b) Find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)} }
(c) Evaluate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x) }
(insert picture of handwritten solution)
Detailed Solution for this Problem
Return to Sample Exam