Difference between revisions of "009B Sample Midterm 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 74: Line 74:
 
|Since this is a definite integral, we need to change the bounds of integration.  
 
|Since this is a definite integral, we need to change the bounds of integration.  
 
|-
 
|-
|We have &nbsp;<math style="vertical-align: -15px">u_1=\cos\bigg(-\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math>&nbsp; and &nbsp;<math style="vertical-align: -15px">u_2=\cos\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}.</math>
+
|We have  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -15px">u_1=\cos\bigg(-\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math>&nbsp; and &nbsp;<math style="vertical-align: -15px">u_2=\cos\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}.</math>
 
|}
 
|}
  

Revision as of 11:04, 27 March 2017

Compute the following integrals:

(a)  

(b)  


Foundations:  
How would you integrate  

        You could use  -substitution.

        Let  
        Then,  
        Thus,

     


Solution:

(a)

Step 1:  
We proceed using  -substitution.
Let  
Then,    and  
Therefore, we have

       

Step 2:  
We integrate to get

       

(b)

Step 1:  
We proceed using u substitution.
Let  
Then,  
Since this is a definite integral, we need to change the bounds of integration.
We have
         and  
Step 2:  
Therefore, we get

       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam