Difference between revisions of "009C Sample Midterm 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
  
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
(insert picture of handwritten solution)
|-
 
|'''1.''' A series &nbsp;<math>\sum a_n</math>&nbsp; is '''absolutely convergent''' if
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; the series &nbsp;<math>\sum |a_n|</math>&nbsp; converges.
 
|-
 
|'''2.''' A series &nbsp;<math>\sum a_n</math>&nbsp; is '''conditionally convergent''' if
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; the series &nbsp;<math>\sum |a_n|</math>&nbsp; diverges and the series &nbsp;<math>\sum a_n</math>&nbsp; converges.
 
|}
 
  
 +
[[009C Sample Midterm 1, Problem 3 Detailed Solution|'''<u>Detailed Solution for this Problem</u>''']]
  
'''Solution:'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we take the absolute value of the terms in the original series.
 
|-
 
|Let &nbsp;<math style="vertical-align: -14px">a_n=\frac{(-1)^n}{n}.</math>
 
|-
 
|Therefore,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\sum_{n=1}^\infty |a_n|} & = & \displaystyle{\sum_{n=1}^\infty \bigg|\frac{(-1)^n}{n}\bigg|}\\
 
&&\\
 
& = & \displaystyle{\sum_{n=1}^\infty \frac{1}{n}.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|This series is the harmonic series (or &nbsp;<math style="vertical-align: -5px">p</math>-series with &nbsp;<math style="vertical-align: -5px">p=1</math>&nbsp;).
 
|-
 
|Thus, it diverges. Hence, the series
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty \frac{(-1)^n}{n}</math>
 
|-
 
|is not absolutely convergent.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, we need to look back at the original series to see
 
|-
 
|if it conditionally converges.
 
|-
 
|For
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty \frac{(-1)^n}{n},</math>
 
|-
 
|we notice that this series is alternating.
 
|-
 
|Let &nbsp;<math style="vertical-align: -14px"> b_n=\frac{1}{n}.</math>
 
|-
 
|First, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{1}{n}\ge 0</math>
 
|-
 
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|The sequence &nbsp;<math style="vertical-align: -4px">\{b_n\}</math>&nbsp; is decreasing since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n+1}<\frac{1}{n}</math>
 
|-
 
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|Also,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{n}=0.</math>
 
|-
 
|Therefore, the series &nbsp;<math>\sum_{n=1}^\infty \frac{(-1)^n}{n}</math> &nbsp; converges
 
|-
 
|by the Alternating Series Test.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 4: &nbsp;
 
|-
 
|Since the series &nbsp;<math>\sum_{n=1}^\infty \frac{(-1)^n}{n}</math> &nbsp; is not absolutely convergent but convergent,
 
|-
 
|this series is conditionally convergent.
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; conditionally convergent (by the p-test and the Alternating Series Test)
 
|-
 
|
 
|}
 
 
[[009C_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:02, 4 November 2017

Determine whether the following series converges absolutely,

conditionally or whether it diverges.

Be sure to justify your answers!



(insert picture of handwritten solution)

Detailed Solution for this Problem

Return to Sample Exam