Difference between revisions of "009B Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 50: Line 50:
 
\displaystyle{s_{\text{avg}}} & = & \displaystyle{\frac{1}{5}\bigg[\frac{25(5)^2}{2}-\frac{5(5)^3}{3}+18(5)\bigg]-0}\\
 
\displaystyle{s_{\text{avg}}} & = & \displaystyle{\frac{1}{5}\bigg[\frac{25(5)^2}{2}-\frac{5(5)^3}{3}+18(5)\bigg]-0}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{233}{6}.}
+
& = & \displaystyle{\frac{233}{6}}\\
 +
&&\\
 +
& \approx & \displaystyle{$38.83.}
  
 
\end{array}</math>
 
\end{array}</math>
Line 59: Line 61:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
| &nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{233}{6}</math>
+
| &nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{233}{6}\approx $38.83</math>
 
|-
 
|-
 
|  
 
|  
 
|}
 
|}
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 09:54, 18 March 2017

Otis Taylor plots the price per share of a stock that he owns as a function of time

and finds that it can be approximated by the function

where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t}   is the time (in years) since the stock was purchased.

Find the average price of the stock over the first five years.


Foundations:  
The average value of a function  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   on an interval  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]}   is given by
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx.}


Solution:

Step 1:  
This problem wants us to find the average value of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s(t)}   over the interval  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [0,5].}
Using the average value formula, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_{\text{avg}}=\frac{1}{5-0} \int_0^5 t(25-5t)+18~dt.}
Step 2:  
First, we distribute to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_{\text{avg}}=\frac{1}{5} \int_0^5 25t-5t^2+18~dt.}
Then, we integrate to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_{\text{avg}}=\left. \frac{1}{5}\bigg[\frac{25t^2}{2}-\frac{5t^3}{3}+18t\bigg]\right|_0^5.}
Step 3:  
We now evaluate to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{s_{\text{avg}}} & = & \displaystyle{\frac{1}{5}\bigg[\frac{25(5)^2}{2}-\frac{5(5)^3}{3}+18(5)\bigg]-0}\\ &&\\ & = & \displaystyle{\frac{233}{6}}\\ &&\\ & \approx & \displaystyle{$38.83.} \end{array}}


Final Answer:  
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{233}{6}\approx $38.83}

Return to Sample Exam