|
|
| Line 15: |
Line 15: |
| | | <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math> | | | <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math> |
| | |- | | |- |
| − | |'''2.''' <math style="vertical-align: -15px">\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math> | + | |'''2.''' Recall |
| | + | |- |
| | + | | <math style="vertical-align: -15px">\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math> |
| | |} | | |} |
| | | | |
Revision as of 09:49, 27 March 2017
Find the following limits:
(a) If
find
(b) Find
(c) Evaluate
| Foundations:
|
1. If we have
|
|
| 2. Recall
|
|
Solution:
(a)
| Step 1:
|
| First, we have
|
|
| Therefore,
|
|
(b)
| Step 1:
|
| First, we write
|
|
| Step 2:
|
| Now, we have
|
|
|
(c)
| Step 1:
|
| First, we have
|
|
| Step 2:
|
| Now, we use the properties of limits to get
|
|
|
| Final Answer:
|
(a)
|
(b)
|
(c)
|
Return to Sample Exam