Difference between revisions of "009A Sample Final 2, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 49: Line 49:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|We begin by noticing that we plug in &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; into
+
|First, we write
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{\sin x}{\cos x-1},</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
|-
+
\displaystyle{\lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}\frac{(\cos x+1)}{(\cos x+1)}}\\
|we get &nbsp; <math style="vertical-align: -12px">\frac{0}{0}.</math>
+
&&\\
|-
+
& = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x (\cos x+1)}{\cos^2x-1}}\\
|
+
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x(\cos x+1)}{-\sin^2 x}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 0} \frac{\cos x+1}{-\sin x}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 61: Line 65:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 0^+} \frac{\sin x}{\cos x-1}} & = & \displaystyle{\lim_{x\rightarrow 0^+} \frac{\cos x+1}{-\sin x}}\\
 +
&&\\
 +
& = & \displaystyle{-\infty}
 +
\end{array}</math>
 +
|-
 +
|and
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 0^-} \frac{\sin x}{\cos x-1}} & = & \displaystyle{\lim_{x\rightarrow 0^-} \frac{\cos x+1}{-\sin x}}\\
 +
&&\\
 +
& = & \displaystyle{\infty.}
 +
\end{array}</math>
 +
|-
 +
|Therefore,
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}=\text{DNE}.</math>
 
|}
 
|}
  
Line 95: Line 117:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp;
 
|-
 
|-
|'''(b)'''
+
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\text{DNE}</math>
 
|-
 
|-
 
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp; <math>\frac{3}{10}</math>
 
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp; <math>\frac{3}{10}</math>
 
|}
 
|}
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 21:02, 7 March 2017

Compute

(a)  

(b)  

(c)  

Foundations:  
In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

(a)  

(b)  

(c)  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we have
       
and
       
Therefore,
       

(c)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       

Step 2:  
Now, we have
       


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam