Difference between revisions of "009A Sample Final 2, Problem 8"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 49: | Line 49: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |First, we write |
|- | |- | ||
− | | <math>\frac{\sin x}{\cos x-1} | + | | <math>\begin{array}{rcl} |
− | + | \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}\frac{(\cos x+1)}{(\cos x+1)}}\\ | |
− | + | &&\\ | |
− | + | & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x (\cos x+1)}{\cos^2x-1}}\\ | |
− | + | &&\\ | |
+ | & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x(\cos x+1)}{-\sin^2 x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\cos x+1}{-\sin x}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 61: | Line 65: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we have |
+ | |- | ||
+ | | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\lim_{x\rightarrow 0^+} \frac{\sin x}{\cos x-1}} & = & \displaystyle{\lim_{x\rightarrow 0^+} \frac{\cos x+1}{-\sin x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-\infty} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |and | ||
+ | |- | ||
+ | | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\lim_{x\rightarrow 0^-} \frac{\sin x}{\cos x-1}} & = & \displaystyle{\lim_{x\rightarrow 0^-} \frac{\cos x+1}{-\sin x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\infty.} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Therefore, | ||
+ | |- | ||
+ | | <math>\lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}=\text{DNE}.</math> | ||
|} | |} | ||
Line 95: | Line 117: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' | + | | '''(a)''' |
|- | |- | ||
− | |'''(b)''' | + | | '''(b)''' <math>\text{DNE}</math> |
|- | |- | ||
| '''(c)''' <math>\frac{3}{10}</math> | | '''(c)''' <math>\frac{3}{10}</math> | ||
|} | |} | ||
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 21:02, 7 March 2017
Compute
(a)
(b)
(c)
Foundations: |
---|
In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
(a) (b) (c) |
Solution:
(a)
Step 1: |
---|
Step 2: |
---|
(b)
Step 1: |
---|
First, we write |
Step 2: |
---|
Now, we have |
and |
Therefore, |
(c)
Step 1: |
---|
We proceed using L'Hôpital's Rule. So, we have |
|
Step 2: |
---|
Now, we have |
Final Answer: |
---|
(a) |
(b) |
(c) |