Difference between revisions of "009A Sample Final 2, Problem 8"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 49: | Line 49: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |First, we write |
|- | |- | ||
| − | | <math>\frac{\sin x}{\cos x-1} | + | | <math>\begin{array}{rcl} |
| − | + | \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}\frac{(\cos x+1)}{(\cos x+1)}}\\ | |
| − | + | &&\\ | |
| − | + | & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x (\cos x+1)}{\cos^2x-1}}\\ | |
| − | + | &&\\ | |
| + | & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x(\cos x+1)}{-\sin^2 x}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\cos x+1}{-\sin x}.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 61: | Line 65: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |Now, we have |
| + | |- | ||
| + | | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\lim_{x\rightarrow 0^+} \frac{\sin x}{\cos x-1}} & = & \displaystyle{\lim_{x\rightarrow 0^+} \frac{\cos x+1}{-\sin x}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{-\infty} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |and | ||
| + | |- | ||
| + | | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\lim_{x\rightarrow 0^-} \frac{\sin x}{\cos x-1}} & = & \displaystyle{\lim_{x\rightarrow 0^-} \frac{\cos x+1}{-\sin x}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\infty.} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |Therefore, | ||
| + | |- | ||
| + | | <math>\lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}=\text{DNE}.</math> | ||
|} | |} | ||
| Line 95: | Line 117: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' | + | | '''(a)''' |
|- | |- | ||
| − | |'''(b)''' | + | | '''(b)''' <math>\text{DNE}</math> |
|- | |- | ||
| '''(c)''' <math>\frac{3}{10}</math> | | '''(c)''' <math>\frac{3}{10}</math> | ||
|} | |} | ||
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 20:02, 7 March 2017
Compute
(a)
(b)
(c)
| Foundations: |
|---|
| In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}} (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}} (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}} |
Solution:
(a)
| Step 1: |
|---|
| Step 2: |
|---|
(b)
| Step 1: |
|---|
| First, we write |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}\frac{(\cos x+1)}{(\cos x+1)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x (\cos x+1)}{\cos^2x-1}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin x(\cos x+1)}{-\sin^2 x}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\cos x+1}{-\sin x}.} \end{array}} |
| Step 2: |
|---|
| Now, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0^+} \frac{\sin x}{\cos x-1}} & = & \displaystyle{\lim_{x\rightarrow 0^+} \frac{\cos x+1}{-\sin x}}\\ &&\\ & = & \displaystyle{-\infty} \end{array}} |
| and |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0^-} \frac{\sin x}{\cos x-1}} & = & \displaystyle{\lim_{x\rightarrow 0^-} \frac{\cos x+1}{-\sin x}}\\ &&\\ & = & \displaystyle{\infty.} \end{array}} |
| Therefore, |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}=\text{DNE}.} |
(c)
| Step 1: |
|---|
| We proceed using L'Hôpital's Rule. So, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow 1}\frac{3x^2}{10x^9}.} \end{array}} |
| Step 2: |
|---|
| Now, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow 1}\frac{3x^2}{10x^9}}\\ &&\\ & = & \displaystyle{\frac{3(1)^2}{10(1)^9}}\\ &&\\ & = & \displaystyle{\frac{3}{10}.} \end{array}} |
| Final Answer: |
|---|
| (a) |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{DNE}} |
| (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{10}} |