Difference between revisions of "009A Sample Final 2, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 65: Line 65:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|  
+
|We proceed using L'Hôpital's Rule. So, we have
|-
 
|
 
|-
 
|
 
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow 1}\frac{3x^2}{10x^9}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 79: Line 76:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow 1}\frac{3x^2}{10x^9}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{3(1)^2}{10(1)^9}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{3}{10}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 96: Line 95:
 
|'''(b)'''
 
|'''(b)'''
 
|-
 
|-
|'''(c)'''
+
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp; <math>\frac{3}{10}</math>
 
|}
 
|}
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 20:47, 7 March 2017

Compute

(a)  

(b)  

(c)  

Foundations:  
In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

(a)  

(b)  

(c)  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       

Step 2:  
Now, we have
       


Final Answer:  
(a)
(b)
   (c)   

Return to Sample Exam