Difference between revisions of "009A Sample Final 2, Problem 8"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 65: | Line 65: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |We proceed using L'Hôpital's Rule. So, we have |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow 1}\frac{3x^2}{10x^9}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 79: | Line 76: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we have |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow 1}\frac{3x^2}{10x^9}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{3(1)^2}{10(1)^9}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{3}{10}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 96: | Line 95: | ||
|'''(b)''' | |'''(b)''' | ||
|- | |- | ||
− | |'''(c)''' | + | | '''(c)''' <math>\frac{3}{10}</math> |
|} | |} | ||
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 20:47, 7 March 2017
Compute
(a)
(b)
(c)
Foundations: |
---|
In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
(a) (b) (c) |
Solution:
(a)
Step 1: |
---|
Step 2: |
---|
(b)
Step 1: |
---|
Step 2: |
---|
(c)
Step 1: |
---|
We proceed using L'Hôpital's Rule. So, we have |
|
Step 2: |
---|
Now, we have |
Final Answer: |
---|
(a) |
(b) |
(c) |