Difference between revisions of "009A Sample Final 2, Problem 10"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 30: | Line 30: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |We start by taking the derivative of <math style="vertical-align: -5px">f(x).</math> |
+ | |- | ||
+ | |Using the Quotient Rule, we have | ||
+ | |- | ||
+ | | <math>\begin{array}{rcl} | ||
+ | \displaystyle{f'(x)} & = & \displaystyle{\frac{(x^2+1)(4x)'-(4x)(x^2+1)'}{(x^2+1)^2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{(x^2+1)(4)-(4x)(2x)}{(x^2+1)^2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{-4(x^2-1)}{(x^2+1)^2}.} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Now, we set <math style="vertical-align: -5px">f'(x)=0.</math> | ||
+ | |- | ||
+ | |So, we have <math style="vertical-align: -6px">-4(x^2-1)=0.</math> | ||
|- | |- | ||
− | | | + | |Hence, we have <math style="vertical-align: 0px">x=1</math> and <math style="vertical-align: -1px">x=-1.</math> |
|- | |- | ||
− | | | + | |So, these values of <math style="vertical-align: 0px">x</math> break up the number line into 3 intervals: |
|- | |- | ||
− | | | + | | <math style="vertical-align: -5px">(-\infty,-1),(-1,1),(1,\infty).</math> |
|} | |} | ||
Line 42: | Line 56: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |To check whether the function is increasing or decreasing in these intervals, we use testpoints. |
+ | |- | ||
+ | |For <math style="vertical-align: -15px">x=-2,~f'(x)=\frac{-12}{25}<0.</math> | ||
+ | |- | ||
+ | |For <math style="vertical-align: -5px">x=0,~f'(x)=4>0.</math> | ||
+ | |- | ||
+ | |For <math style="vertical-align: -15px">x=2,~f'(x)=\frac{-12}{25}<0.</math> | ||
+ | |- | ||
+ | |Thus, <math style="vertical-align: -5px">f(x)</math> is increasing on <math style="vertical-align: -5px">(-1,1)</math> and decreasing on <math style="vertical-align: -5px">(-\infty,-1)\cup (1,\infty).</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 3: | ||
+ | |- | ||
+ | |Using the First Derivative Test, <math style="vertical-align: -5px">f(x)</math> has a local minimum at <math style="vertical-align: -1px">x=-1</math> and a local maximum at <math style="vertical-align: 0px">x=1.</math> | ||
+ | |- | ||
+ | |Thus, the local maximum and local minimum values of <math style="vertical-align: -4px">f</math> are | ||
+ | |- | ||
+ | | <math>f(1)=2,~f(-1)=-2.</math> | ||
|- | |- | ||
| | | | ||
Line 99: | Line 131: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' | + | | '''(a)''' <math style="vertical-align: -5px">f(x)</math> is increasing on <math style="vertical-align: -5px">(-1,1)</math> and decreasing on <math style="vertical-align: -5px">(-\infty,-1)\cup (1,\infty).</math> |
+ | |- | ||
+ | | The local maximum value of <math style="vertical-align: -4px">f</math> is <math style="vertical-align: 0px">2</math> and the local minimum value of <math style="vertical-align: -4px">f</math> is <math style="vertical-align: 0px">-2</math> | ||
|- | |- | ||
− | |'''(b)''' | + | | '''(b)''' |
|- | |- | ||
| '''(c)''' <math>y=0</math> | | '''(c)''' <math>y=0</math> |
Revision as of 19:36, 7 March 2017
Let
(a) Find all local maximum and local minimum values of find all intervals where is increasing and all intervals where is decreasing.
(b) Find all inflection points of the function find all intervals where the function is concave upward and all intervals where is concave downward.
(c) Find all horizontal asymptotes of the graph
(d) Sketch the graph of
Foundations: |
---|
1. is increasing when and is decreasing when |
2. The First Derivative Test tells us when we have a local maximum or local minimum. |
3. is concave up when and is concave down when |
4. Inflection points occur when |
Solution:
(a)
Step 1: |
---|
We start by taking the derivative of |
Using the Quotient Rule, we have |
Now, we set |
So, we have |
Hence, we have and |
So, these values of break up the number line into 3 intervals: |
Step 2: |
---|
To check whether the function is increasing or decreasing in these intervals, we use testpoints. |
For |
For |
For |
Thus, is increasing on and decreasing on |
Step 3: |
---|
Using the First Derivative Test, has a local minimum at and a local maximum at |
Thus, the local maximum and local minimum values of are |
(b)
Step 1: |
---|
Step 2: |
---|
(c)
Step 1: |
---|
First, we note that the degree of the numerator is and |
the degree of the denominator is |
Step 2: |
---|
Since the degree of the denominator is greater than the degree of the numerator, |
has a horizontal asymptote |
(d): |
---|
Insert sketch |
Final Answer: |
---|
(a) is increasing on and decreasing on |
The local maximum value of is and the local minimum value of is |
(b) |
(c) |
(d) See above |