Difference between revisions of "009A Sample Final 2, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 30: Line 30:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We start by taking the derivative of &nbsp;<math style="vertical-align: -5px">f(x).</math>&nbsp;
 +
|-
 +
|Using the Quotient Rule, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{\frac{(x^2+1)(4x)'-(4x)(x^2+1)'}{(x^2+1)^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{(x^2+1)(4)-(4x)(2x)}{(x^2+1)^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{-4(x^2-1)}{(x^2+1)^2}.}
 +
\end{array}</math>
 +
|-
 +
|Now, we set &nbsp;<math style="vertical-align: -5px">f'(x)=0.</math>&nbsp;
 +
|-
 +
|So, we have &nbsp;<math style="vertical-align: -6px">-4(x^2-1)=0.</math>
 
|-
 
|-
|
+
|Hence, we have &nbsp;<math style="vertical-align: 0px">x=1</math>&nbsp; and &nbsp;<math style="vertical-align: -1px">x=-1.</math>
 
|-
 
|-
|
+
|So, these values of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; break up the number line into 3 intervals:
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">(-\infty,-1),(-1,1),(1,\infty).</math>
 
|}
 
|}
  
Line 42: Line 56:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|To check whether the function is increasing or decreasing in these intervals, we use testpoints.
 +
|-
 +
|For &nbsp;<math style="vertical-align: -15px">x=-2,~f'(x)=\frac{-12}{25}<0.</math>
 +
|-
 +
|For &nbsp;<math style="vertical-align: -5px">x=0,~f'(x)=4>0.</math>
 +
|-
 +
|For &nbsp;<math style="vertical-align: -15px">x=2,~f'(x)=\frac{-12}{25}<0.</math>
 +
|-
 +
|Thus, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is increasing on &nbsp;<math style="vertical-align: -5px">(-1,1)</math>&nbsp; and decreasing on &nbsp;<math style="vertical-align: -5px">(-\infty,-1)\cup (1,\infty).</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Using the First Derivative Test, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has a local minimum at &nbsp;<math style="vertical-align: -1px">x=-1</math>&nbsp; and a local maximum at &nbsp;<math style="vertical-align: 0px">x=1.</math>&nbsp;
 +
|-
 +
|Thus, the local maximum and local minimum values of &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; are
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f(1)=2,~f(-1)=-2.</math>
 
|-
 
|-
 
|
 
|
Line 99: Line 131:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math style="vertical-align: -5px">f(x)</math>&nbsp; is increasing on &nbsp;<math style="vertical-align: -5px">(-1,1)</math>&nbsp; and decreasing on &nbsp;<math style="vertical-align: -5px">(-\infty,-1)\cup (1,\infty).</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;The local maximum value of &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; is &nbsp;<math style="vertical-align: 0px">2</math>&nbsp; and the local minimum value of &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; is &nbsp;<math style="vertical-align: 0px">-2</math>&nbsp;
 
|-
 
|-
|'''(b)'''
+
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp;
 
|-
 
|-
 
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp; <math>y=0</math>
 
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp; <math>y=0</math>

Revision as of 19:36, 7 March 2017

Let

(a) Find all local maximum and local minimum values of    find all intervals where    is increasing and all intervals where    is decreasing.

(b) Find all inflection points of the function    find all intervals where the function    is concave upward and all intervals where    is concave downward.

(c) Find all horizontal asymptotes of the graph  

(d) Sketch the graph of  

Foundations:  
1.   is increasing when    and    is decreasing when  
2. The First Derivative Test tells us when we have a local maximum or local minimum.
3.   is concave up when    and    is concave down when  
4. Inflection points occur when  


Solution:

(a)

Step 1:  
We start by taking the derivative of   
Using the Quotient Rule, we have
       
Now, we set   
So, we have  
Hence, we have    and  
So, these values of    break up the number line into 3 intervals:
       
Step 2:  
To check whether the function is increasing or decreasing in these intervals, we use testpoints.
For  
For  
For  
Thus,    is increasing on    and decreasing on  
Step 3:  
Using the First Derivative Test,    has a local minimum at    and a local maximum at   
Thus, the local maximum and local minimum values of    are
       

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
First, we note that the degree of the numerator is    and
the degree of the denominator is   
Step 2:  
Since the degree of the denominator is greater than the degree of the numerator,
  has a horizontal asymptote
       
(d):  
Insert sketch


Final Answer:  
   (a)      is increasing on    and decreasing on  
           The local maximum value of    is    and the local minimum value of    is   
   (b)   
   (c)   
   (d)    See above

Return to Sample Exam