Difference between revisions of "009A Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 94: Line 94:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|  
+
|First, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
|-
+
\displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2}}{2x-1}} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2(1+\frac{2}{x^2})}}{2x-1}}\\
|
+
&&\\
|-
+
& = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{|x|\sqrt{1+\frac{2}{x^2}}}{2x-1}}\\
|
+
&&\\
|-
+
& = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{-x\sqrt{1+\frac{2}{x^2}}}{x(2-\frac{1}{x})}}\\
|
+
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{-1\sqrt{1+\frac{2}{x^2}}}{(2-\frac{1}{x})}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 108: Line 110:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now,
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2}}{2x-1}} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{-1\sqrt{1+\frac{2}{x^2}}}{(2-\frac{1}{x})} }\\
 +
&&\\
 +
& = & \displaystyle{\frac{-\sqrt{1+0}}{(2-0)}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{-1}{2}.}
 +
\end{array}</math>
 
|}
 
|}
  

Revision as of 16:51, 7 March 2017

Compute

(a)  

(b)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 0} \frac{\sin^2x}{3x}}

(c)  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2}}{2x-1}}

Foundations:  
L'Hôpital's Rule
        Suppose that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} f(x)}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} g(x)}   are both zero or both  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pm \infty .}

        If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}}   is finite or  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pm \infty ,}

        then  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.}


Solution:

(a)

Step 1:  
We begin by noticing that we plug in  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=4}   into
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sqrt{x+5}-3}{x-4},}
we get   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{0}{0}.}
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the numerator.
Hence, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}} & = & \displaystyle{\lim_{x\rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}\frac{(\sqrt{x+5}+3)}{(\sqrt{x+5}+3)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 4} \frac{(x+5)-9}{(x-4)(\sqrt{x+5}+3)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 4} \frac{x-4}{(x-4)(\sqrt{x+5}+3)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 4} \frac{1}{\sqrt{x+5}+3}}\\ &&\\ & = & \displaystyle{ \frac{1}{\sqrt{9}+3}}\\ &&\\ & = & \displaystyle{\frac{1}{6}.} \end{array}}

(b)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0} \frac{\sin^2 (x)}{3x}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow 0}\frac{2\sin(x)\cos(x)}{3}.} \end{array}}

Step 2:  
Now, we plug in  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0}   to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0} \frac{\sin^2 (x)}{3x}} & = & \displaystyle{\frac{2\sin(0)\cos(0)}{3}}\\ &&\\ & = & \displaystyle{\frac{2(0)(1)}{3}}\\ &&\\ & = & \displaystyle{0.} \end{array}}

(c)

Step 1:  
First, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2}}{2x-1}} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2(1+\frac{2}{x^2})}}{2x-1}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{|x|\sqrt{1+\frac{2}{x^2}}}{2x-1}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{-x\sqrt{1+\frac{2}{x^2}}}{x(2-\frac{1}{x})}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{-1\sqrt{1+\frac{2}{x^2}}}{(2-\frac{1}{x})}.} \end{array}}
Step 2:  
Now,
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2}}{2x-1}} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{-1\sqrt{1+\frac{2}{x^2}}}{(2-\frac{1}{x})} }\\ &&\\ & = & \displaystyle{\frac{-\sqrt{1+0}}{(2-0)}}\\ &&\\ & = & \displaystyle{\frac{-1}{2}.} \end{array}}


Final Answer:  
   (a)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{6}}
   (b)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0}
   (c)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-1}{2}}

Return to Sample Exam