Difference between revisions of "009A Sample Final 2, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 50: | Line 50: | ||
|Now, we have | |Now, we have | ||
|- | |- | ||
| − | | <math>f(0)=1,~f(2)=\frac{ | + | | <math>f(0)=1,~f(2)=-\frac{1}{3}.</math> |
|- | |- | ||
|Therefore, the absolute maximum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -1px">1</math> | |Therefore, the absolute maximum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -1px">1</math> | ||
|- | |- | ||
| − | |and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -15px">\frac{ | + | |and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -15px">-\frac{1}{3}.</math> |
|} | |} | ||
| Line 61: | Line 61: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | The absolute maximum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -1px">1</math> and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -15px">\frac{ | + | | The absolute maximum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -1px">1</math> and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -15px">-\frac{1}{3}.</math> |
|} | |} | ||
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 12:31, 18 March 2017
Find the absolute maximum and absolute minimum values of the function
on the interval
| Foundations: |
|---|
| 1. To find the absolute maximum and minimum of on an interval |
|
we need to compare the values of our critical points with and |
| 2. To find the critical points for we set and solve for |
|
Also, we include the values of where is undefined. |
Solution:
| Step 1: |
|---|
| To find the absolute maximum and minimum of on the interval |
| we need to find the critical points of |
| Using the Quotient Rule, we have |
|
|
| We notice that for any |
| So, there are no critical points in the interval |
| Step 2: |
|---|
| Now, we have |
| Therefore, the absolute maximum value for is |
| and the absolute minimum value for is |
| Final Answer: |
|---|
| The absolute maximum value for is and the absolute minimum value for is |