Difference between revisions of "009A Sample Final 1, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 58: Line 58:
 
|Solving, we get &nbsp;<math style="vertical-align: -1px">x=2.</math>
 
|Solving, we get &nbsp;<math style="vertical-align: -1px">x=2.</math>
 
|-
 
|-
|Thus, the critical points for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; are &nbsp;<math style="vertical-align: -5px">(0,0)</math> and &nbsp;<math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6)).</math>
+
|Thus, the critical points for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; are &nbsp;<math style="vertical-align: -5px">(0,0)</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6)).</math>
 
|}
 
|}
  

Revision as of 12:26, 18 March 2017

Consider the following continuous function:

defined on the closed, bounded interval  .

(a) Find all the critical points for  .

(b) Determine the absolute maximum and absolute minimum values for    on the interval  .

Foundations:  
1. To find the critical points for    we set    and solve for  

        Also, we include the values of    where    is undefined.

2. To find the absolute maximum and minimum of    on an interval  

        we need to compare the    values of our critical points with    and  


Solution:

(a)

Step 1:  
To find the critical points, first we need to find  
Using the Product Rule, we have

       

Step 2:  
Notice    is undefined when  
Now, we need to set  
So, we get

       

We cross multiply to get  
Solving, we get  
Thus, the critical points for    are    and  

(b)

Step 1:  
We need to compare the values of    at the critical points and at the endpoints of the interval.
Using the equation given, we have    and  
Step 2:  
Comparing the values in Step 1 with the critical points in (a), the absolute maximum value for    is  
and the absolute minimum value for    is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^{\frac{1}{3}}(-6).}


Final Answer:  
    (a)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,0)}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2,2^{\frac{1}{3}}(-6))}
    (b)    The absolute maximum value for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 32}   and the absolute minimum value for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^{\frac{1}{3}}(-6).}

Return to Sample Exam