Difference between revisions of "009A Sample Final 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 41: Line 41:
 
!Step 2:  
 
!Step 2:  
 
|-
 
|-
|
+
|To check whether the function is increasing or decreasing in these intervals, we use testpoints.
 +
|-
 +
|For &nbsp;<math style="vertical-align: -5px">x=-1,~f'(x)=28>0.</math>
 +
|-
 +
|For &nbsp;<math style="vertical-align: -5px">x=1,~f'(x)=20>0.</math>
 +
|-
 +
|For &nbsp;<math style="vertical-align: -5px">x=7,~f'(x)=-196<0.</math>
 +
|-
 +
|Thus, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is increasing on &nbsp;<math style="vertical-align: -5px">(-\infty,6)</math>&nbsp; and decreasing on &nbsp;<math style="vertical-align: -5px">(6,\infty).</math>
 
|-
 
|-
 
|
 
|
Line 95: Line 103:
 
|Insert graph
 
|Insert graph
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp;  
+
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math style="vertical-align: -5px">f(x)</math>&nbsp; is increasing on &nbsp;<math style="vertical-align: -5px">(-\infty,6)</math>&nbsp; and decreasing on &nbsp;<math style="vertical-align: -5px">(6,\infty).</math>
 
|-
 
|-
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp;
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp;

Revision as of 21:01, 6 March 2017

Let

(a) Over what  -intervals is    increasing/decreasing?

(b) Find all critical points of    and test each for local maximum and local minimum.

(c) Over what  -intervals is    concave up/down?

(d) Sketch the shape of the graph of  

Foundations:  
1.   is increasing when    and    is decreasing when  
2. The First Derivative Test tells us when we have a local maximum or local minimum.
3.   is concave up when    and    is concave down when  


Solution:

(a)

Step 1:  
We start by taking the derivative of    We have  
Now, we set    So, we have  
Hence, we have    and  
So, these values of    break up the number line into 3 intervals:  
Step 2:  
To check whether the function is increasing or decreasing in these intervals, we use testpoints.
For  
For  
For  
Thus,    is increasing on    and decreasing on  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  
(d):  
Insert graph


Final Answer:  
   (a)      is increasing on    and decreasing on  
   (b)   
   (c)   
   (d)    See above

Return to Sample Exam