Difference between revisions of "009A Sample Final 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 26: Line 26:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We begin by noticing that we plug in &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; into
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{\sin(5x)}{1-\sqrt{1-x}},</math>
 
|-
 
|-
|
+
|we get &nbsp; <math style="vertical-align: -12px">\frac{0}{0}.</math>
 
|}
 
|}
  
Line 38: Line 36:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we multiply the numerator and denominator by the conjugate of the denominator.
 +
|-
 +
|Hence, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 0} \frac{\sin(5x)}{1-\sqrt{1-x}}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(5x)}{1-\sqrt{1-x}} \bigg(\frac{1+\sqrt{1-x}}{1+\sqrt{1-x}}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(5x)(1+\sqrt{1-x})}{x}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(5x)}{x}(1+\sqrt{1-x})}\\
 +
&&\\
 +
& = & \displaystyle{\bigg(\lim_{x\rightarrow 0} \frac{\sin(5x)}{x}\bigg) \lim_{x\rightarrow 0}(1+\sqrt{1-x})}\\
 +
&&\\
 +
& = & \displaystyle{\bigg(5\lim_{x\rightarrow 0} \frac{\sin(5x)}{5x}\bigg) (2)}\\
 +
&&\\
 +
& = & \displaystyle{5(1)(2)}\\
 +
&&\\
 +
& = & \displaystyle{10.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 122: Line 136:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math>10</math>
 
|-
 
|-
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\frac{-3}{4}</math>
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\frac{-3}{4}</math>

Revision as of 20:48, 6 March 2017

Find each of the following limits if it exists. If you think the limit does not exist provide a reason.

(a)  

(b)    given that  

(c)  


Foundations:  
1. If    we have
       
2.  


Solution:

(a)

Step 1:  
We begin by noticing that we plug in    into
       
we get  
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the denominator.
Hence, we have
       

(b)

Step 1:  
Since  
we have
       
Step 2:  
If we multiply both sides of the last equation by    we get
       
Now, using properties of limits, we have
       
Step 3:  
Solving for    in the last equation,
we get

       

(c)

Step 1:  
First, we write
       
Step 2:  
Now, we have
       


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam