Difference between revisions of "009A Sample Final 2, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 8: | Line 8: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |'''1.''' To find the absolute maximum and minimum of <math style="vertical-align: -5px">f(x)</math> on an interval <math>[a,b],</math> |
|- | |- | ||
| | | | ||
+ | we need to compare the <math style="vertical-align: -5px">y</math> values of our critical points with <math style="vertical-align: -5px">f(a)</math> and <math style="vertical-align: -5px">f(b).</math> | ||
|- | |- | ||
− | | | + | |'''2.''' To find the critical points for <math style="vertical-align: -5px">f(x),</math> we set <math style="vertical-align: -5px">f'(x)=0</math> and solve for <math style="vertical-align: -1px">x.</math> |
|- | |- | ||
| | | | ||
+ | Also, we include the values of <math style="vertical-align: -1px">x</math> where <math style="vertical-align: -5px">f'(x)</math> is undefined. | ||
|} | |} | ||
Line 23: | Line 25: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |To find the absolute maximum and minimum of <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -5px">[0,2],</math> |
+ | |- | ||
+ | |we need to find the critical points of <math style="vertical-align: -5px">f(x).</math> | ||
+ | |- | ||
+ | |Using the Quotient Rule, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{f'(x)} & = & \displaystyle{\frac{(1+x)(1-x)'-(1-x)(1+x)'}{(1+x)^2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{(1+x)(-1)-(1-x)(1)}{(1+x)^2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{-2}{(1+x)^2}.} | ||
+ | \end{array}</math> | ||
|- | |- | ||
− | | | + | |We notice that <math style="vertical-align: -6px">f'(x)\ne 0</math> for any <math style="vertical-align: 0px">x.</math> |
|- | |- | ||
− | | | + | |So, there are no critical points in the interval <math style="vertical-align: -5px">[0,2].</math> |
|} | |} | ||
Line 35: | Line 48: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we have |
+ | |- | ||
+ | | <math>f(0)=1,~f(2)=\frac{-1}{3}.</math> | ||
+ | |- | ||
+ | |Therefore, the absolute maximum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -1px">1</math> | ||
|- | |- | ||
− | | | + | |and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -15px">\frac{-1}{3}.</math> |
|} | |} | ||
Line 44: | Line 61: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | | The absolute maximum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -1px">1</math> and the absolute minimum value for <math style="vertical-align: -5px">f(x)</math> is <math style="vertical-align: -15px">\frac{-1}{3}.</math> |
|} | |} | ||
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 16:45, 7 March 2017
Find the absolute maximum and absolute minimum values of the function
on the interval
Foundations: |
---|
1. To find the absolute maximum and minimum of on an interval |
we need to compare the values of our critical points with and |
2. To find the critical points for we set and solve for |
Also, we include the values of where is undefined. |
Solution:
Step 1: |
---|
To find the absolute maximum and minimum of on the interval |
we need to find the critical points of |
Using the Quotient Rule, we have |
|
We notice that for any |
So, there are no critical points in the interval |
Step 2: |
---|
Now, we have |
Therefore, the absolute maximum value for is |
and the absolute minimum value for is |
Final Answer: |
---|
The absolute maximum value for is and the absolute minimum value for is |