Difference between revisions of "009A Sample Final 2, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|'''1.''' To find the absolute maximum and minimum of &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; on an interval &nbsp;<math>[a,b],</math>
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; we need to compare the &nbsp;<math style="vertical-align: -5px">y</math>&nbsp; values of our critical points with &nbsp;<math style="vertical-align: -5px">f(a)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(b).</math>
 
|-
 
|-
|
+
|'''2.''' To find the critical points for &nbsp;<math style="vertical-align: -5px">f(x),</math>&nbsp; we set &nbsp;<math style="vertical-align: -5px">f'(x)=0</math>&nbsp; and solve for &nbsp;<math style="vertical-align: -1px">x.</math>
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; Also, we include the values of &nbsp;<math style="vertical-align: -1px">x</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">f'(x)</math>&nbsp; is undefined.
 
|}
 
|}
  
Line 23: Line 25:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|To find the absolute maximum and minimum of &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; on the interval &nbsp;<math style="vertical-align: -5px">[0,2],</math>
 +
|-
 +
|we need to find the critical points of &nbsp;<math style="vertical-align: -5px">f(x).</math>
 +
|-
 +
|Using the Quotient Rule, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{\frac{(1+x)(1-x)'-(1-x)(1+x)'}{(1+x)^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{(1+x)(-1)-(1-x)(1)}{(1+x)^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{-2}{(1+x)^2}.}
 +
\end{array}</math>
 
|-
 
|-
|
+
|We notice that &nbsp;<math style="vertical-align: -6px">f'(x)\ne 0</math>&nbsp; for any &nbsp;<math style="vertical-align: 0px">x.</math>
 
|-
 
|-
|
+
|So, there are no critical points in the interval &nbsp;<math style="vertical-align: -5px">[0,2].</math>
 
|}
 
|}
  
Line 35: Line 48:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f(0)=1,~f(2)=\frac{-1}{3}.</math>
 +
|-
 +
|Therefore, the absolute maximum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">1</math>
 
|-
 
|-
|
+
|and the absolute minimum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -15px">\frac{-1}{3}.</math>
 
|}
 
|}
  
Line 44: Line 61:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;The absolute maximum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">1</math>&nbsp; and the absolute minimum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -15px">\frac{-1}{3}.</math>
 
|}
 
|}
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:45, 7 March 2017

Find the absolute maximum and absolute minimum values of the function

on the interval  

Foundations:  
1. To find the absolute maximum and minimum of    on an interval  

        we need to compare the    values of our critical points with    and  

2. To find the critical points for    we set    and solve for  

        Also, we include the values of    where    is undefined.


Solution:

Step 1:  
To find the absolute maximum and minimum of    on the interval  
we need to find the critical points of  
Using the Quotient Rule, we have

       

We notice that    for any  
So, there are no critical points in the interval  
Step 2:  
Now, we have
       
Therefore, the absolute maximum value for    is  
and the absolute minimum value for    is  


Final Answer:  
       The absolute maximum value for    is    and the absolute minimum value for    is  

Return to Sample Exam