Difference between revisions of "009A Sample Final 2, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
 +
|-
 +
|'''1.''' '''Intermediate Value Theorem'''
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;If &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous on a closed interval &nbsp;<math style="vertical-align: -5px">[a,b]</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; is any number
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;between &nbsp;<math style="vertical-align: -5px">f(a)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(b),</math>&nbsp; then there is at least one number &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; in the closed interval such that &nbsp;<math style="vertical-align: -5px">f(x)=c.</math>
 +
|-
 +
|'''2.'''  '''Mean Value Theorem'''
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Suppose &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is a function that satisfies the following:
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous on the closed interval &nbsp;<math style="vertical-align: -5px">[a,b].</math>
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is differentiable on the open interval &nbsp;<math style="vertical-align: -5px">(a,b).</math>
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;Then, there is a number &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; such that &nbsp;<math style="vertical-align: 0px">a<c<b</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">f'(c)=\frac{f(b)-f(a)}{b-a}.</math>
 
|}
 
|}
  
Line 19: Line 31:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|First, we note that
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f(0)=-2.</math>
 +
|-
 +
|Also,
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f(1)=1.</math>
 +
|-
 +
|Since &nbsp;<math style="vertical-align: -5px">f(0)<0</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(1)>0,</math>&nbsp;
 +
|-
 +
|there exists &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; with &nbsp;<math style="vertical-align: -1px">0<x<1</math>&nbsp; such that
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">f(x)=0</math>&nbsp;
 
|-
 
|-
|
+
|by the Intermediate Value Theorem.
 
|-
 
|-
|
+
|Hence, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has at least one zero.
 
|}
 
|}
  
Line 31: Line 53:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Suppose that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has more than one zero.
 +
|-
 +
|So, there exist &nbsp;<math style="vertical-align: -4px">a,b</math>&nbsp; such that
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">f(a)=f(b)=0.</math>
 +
|-
 +
|Then, by the Mean Value Theorem, there exists &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">a<c<b</math>&nbsp; such that
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">f'(c)=0.</math>
 +
|-
 +
|We have &nbsp;<math style="vertical-align: -5px">f'(x)=3x^2+2.</math>&nbsp;
 +
|-
 +
|Since &nbsp;<math style="vertical-align: -5px">x^2\ge 0,</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px"> f'(x) \ge 2.</math>
 
|-
 
|-
|
+
|Therefore, it is impossible for &nbsp;<math style="vertical-align: -5px">f'(c)=0.</math>&nbsp; Hence, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has at most one zero.
 
|}
 
|}
  
Line 40: Line 76:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; See solution above.
 
|}
 
|}
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 15:28, 7 March 2017

Show that the equation  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^3+2x-2=0}   has exactly one real root.

Foundations:  
1. Intermediate Value Theorem
       If    is continuous on a closed interval    and    is any number

       between    and    then there is at least one number    in the closed interval such that  

2. Mean Value Theorem
        Suppose    is a function that satisfies the following:

         is continuous on the closed interval  

         is differentiable on the open interval  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a,b).}

       Then, there is a number  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c}   such that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a<c<b}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(c)=\frac{f(b)-f(a)}{b-a}.}


Solution:

Step 1:  
First, we note that
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(0)=-2.}
Also,
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(1)=1.}
Since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(0)<0}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(1)>0,}  
there exists  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x}   with  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0<x<1}   such that
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=0}  
by the Intermediate Value Theorem.
Hence,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   has at least one zero.
Step 2:  
Suppose that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   has more than one zero.
So, there exist  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a,b}   such that
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(a)=f(b)=0.}
Then, by the Mean Value Theorem, there exists  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c}   with  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a<c<b}   such that
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(c)=0.}
We have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=3x^2+2.}  
Since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2\ge 0,}
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x) \ge 2.}
Therefore, it is impossible for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(c)=0.}   Hence,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   has at most one zero.


Final Answer:  
        See solution above.

Return to Sample Exam