Difference between revisions of "009A Sample Final 2, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 13: Line 13:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|'''1.''' <math style="vertical-align: -5px">f(x)</math>&nbsp; is increasing when &nbsp;<math style="vertical-align: -5px">f'(x)>0</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is decreasing when &nbsp;<math style="vertical-align: -5px">f'(x)<0.</math>
 
|-
 
|-
|
+
|'''2. The First Derivative Test''' tells us when we have a local maximum or local minimum.
 
|-
 
|-
|
+
|'''3.''' <math style="vertical-align: -5px">f(x)</math>&nbsp; is concave up when &nbsp;<math style="vertical-align: -5px">f''(x)>0</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is concave down when &nbsp;<math style="vertical-align: -5px">f''(x)<0.</math>
 
|-
 
|-
|
+
|'''4.''' Inflection points occur when &nbsp;<math style="vertical-align: -5px">f''(x)=0.</math>
 
|}
 
|}
  
Line 94: Line 94:
 
!(d): &nbsp;
 
!(d): &nbsp;
 
|-
 
|-
|
+
|Insert sketch
 
|-
 
|-
 
|
 
|

Revision as of 18:11, 7 March 2017

Let

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{4x}{x^2+1}}

(a) Find all local maximum and local minimum values of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f,}   find all intervals where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}   is increasing and all intervals where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}   is decreasing.

(b) Find all inflection points of the function  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f,}   find all intervals where the function  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}   is concave upward and all intervals where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}   is concave downward.

(c) Find all horizontal asymptotes of the graph  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x).}

(d) Sketch the graph of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x).}

Foundations:  
1. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is increasing when  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)>0}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is decreasing when  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)<0.}
2. The First Derivative Test tells us when we have a local maximum or local minimum.
3. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is concave up when  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f''(x)>0}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is concave down when  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f''(x)<0.}
4. Inflection points occur when  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  
(d):  
Insert sketch


Final Answer:  
(a)
(b)
(c)
(d)

Return to Sample Exam