Difference between revisions of "009C Sample Final 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 73: Line 73:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, note that &nbsp;<math style="vertical-align: -5px">|x|<1</math>&nbsp; corresponds to the interval &nbsp;<math style="vertical-align: -4px">(-1,1).</math>
 
|-
 
|-
|
+
|To obtain the interval of convergence, we need to test the endpoints of this interval
 
|-
 
|-
|
+
|for convergence since the Ratio Test is inconclusive when &nbsp;<math style="vertical-align: -1px">R=1.</math>
 
|}
 
|}
  
Line 83: Line 83:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|First, let &nbsp;<math style="vertical-align: -1px">x=1.</math> 
 +
|-
 +
|Then, the series becomes &nbsp;<math>\sum_{n=0}^\infty (-1)^n \frac{1}{n+1}.</math>
 +
|-
 +
|This is an alternating series.
 +
|-
 +
|Let &nbsp;<math style="vertical-align: -15px">b_n=\frac{1}{n+1}.</math>.
 +
|-
 +
|The sequence &nbsp;<math>\{b_n\}</math>&nbsp; is decreasing since
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n+2}<\frac{1}{n+1}</math>
 +
|-
 +
|for all &nbsp;<math style="vertical-align: -3px">n\ge 0.</math>
 +
|-
 +
|Also,
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} b_n=\lim_{n\rightarrow \infty} \frac{1}{n+1}=0.</math>
 +
|-
 +
|Therefore, this series converges by the Alternating Series Test
 +
|-
 +
|and we include &nbsp;<math style="vertical-align: -1px">x=1</math>&nbsp; in our interval.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Now, let &nbsp;<math style="vertical-align: -1px">x=-1.</math>
 +
|-
 +
|Then, the series becomes
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\sum_{n=0}^\infty \frac{(-1)^{2n+1}}{n+1}} & = & \displaystyle{\sum_{n=1}^\infty \frac{-1}{n+1}}\\
 +
&&\\
 +
& = & \displaystyle{(-1)\sum_{n=1}^\infty \frac{1}{n+1}.}
 +
\end{array}</math>
 +
|-
 +
|Now, we note that
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n+1}>0</math>
 +
|-
 +
|for all &nbsp;<math style="vertical-align: -3px">n\ge 0.</math>
 +
|-
 +
|This means that we can use the limit comparison test on this series.
 +
|-
 +
|Let &nbsp;<math style="vertical-align: -19px">a_n=\frac{1}{n+1}.</math>
 +
|-
 +
|Let &nbsp;<math style="vertical-align: -14px">b_n=\frac{1}{n}.</math>
 +
|-
 +
|Then, &nbsp;<math>\sum_{n=1}^\infty b_n</math>&nbsp; diverges since it is the harmonic series.
 +
|-
 +
|We have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty} \frac{a_n}{b_n}} & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{(\frac{1}{n+1})}{(\frac{1}{n})}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{n}{n+1}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} 1.}
 +
\end{array}</math>
 +
|-
 +
|Therefore, the series
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^{\infty} \frac{1}{n+1}</math>
 +
|-
 +
|diverges by the Limit Comparison Test.
 +
|-
 +
|Therefore, we do not include &nbsp;<math style="vertical-align: -1px">x=-1</math>&nbsp; in our interval.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 4: &nbsp;
 
|-
 
|-
|
+
|The interval of convergence is &nbsp;<math style="vertical-align: -4px">(-1,1].</math>
 
|}
 
|}
  
Line 134: Line 204:
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; The radius of convergence is &nbsp;<math style="vertical-align: -1px">R=1.</math>
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; The radius of convergence is &nbsp;<math style="vertical-align: -1px">R=1.</math>
 
|-
 
|-
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp;
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>(-1,1]</math>
 
|-
 
|-
 
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp;
 
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp;

Revision as of 16:45, 5 March 2017

Consider the power series

(a) Find the radius of convergence of the above power series.

(b) Find the interval of convergence of the above power series.

(c) Find the closed formula for the function    to which the power series converges.

(d) Does the series

converge? If so, find its sum.

Foundations:  
Ratio Test
        Let    be a series and  
        Then,

        If    the series is absolutely convergent.

        If    the series is divergent.

        If    the test is inconclusive.


Solution:

(a)

Step 1:  
We use the Ratio Test to determine the radius of convergence.
We have

       

Step 2:  
The Ratio Test tells us this series is absolutely convergent if  
Hence, the Radius of Convergence of this series is  

(b)

Step 1:  
First, note that    corresponds to the interval  
To obtain the interval of convergence, we need to test the endpoints of this interval
for convergence since the Ratio Test is inconclusive when  
Step 2:  
First, let  
Then, the series becomes  
This is an alternating series.
Let  .
The sequence    is decreasing since
       
for all  
Also,
       
Therefore, this series converges by the Alternating Series Test
and we include    in our interval.
Step 3:  
Now, let  
Then, the series becomes
       
Now, we note that
       
for all  
This means that we can use the limit comparison test on this series.
Let  
Let  
Then,    diverges since it is the harmonic series.
We have
       
Therefore, the series
       
diverges by the Limit Comparison Test.
Therefore, we do not include    in our interval.
Step 4:  
The interval of convergence is  

(c)

Step 1:  
Step 2:  

(d)

Step 1:  
Step 2:  


Final Answer:  
    (a)     The radius of convergence is  
    (b)    
    (c)    
    (d)    

Return to Sample Exam