Difference between revisions of "009C Sample Final 3, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 34: Line 34:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we need to convert this Cartesian point into polar.
 +
|-
 +
|We have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{r} & = & \displaystyle{\sqrt{x^2+y^2}}\\
 +
&&\\
 +
& = & \displaystyle{\sqrt{\frac{2}{4}+\frac{2}{4}}}\\
 +
&&\\
 +
& = & \displaystyle{\sqrt{1}}\\
 +
&&\\
 +
& = & \displaystyle{1.}
 +
\end{array}</math>
 +
|-
 +
|Also, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\tan \theta } & = & \displaystyle{\frac{y}{x}}\\
 +
&&\\
 +
& = & \displaystyle{1.}
 +
\end{array}</math>
 
|-
 
|-
|
+
|So, &nbsp;<math>\theta=\frac{\pi}{4}.</math>
 
|-
 
|-
|
+
|Now, this point in polar is &nbsp;<math>\bigg(1,\frac{\pi}{4}\bigg).</math>
 
|}
 
|}
  
Line 44: Line 64:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we plug in &nbsp;<math>\theta=\frac{\pi}{4}</math>&nbsp; into our polar equation.
 +
|-
 +
|We get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{r} & = & \displaystyle{1+\cos^2\bigg(\frac{2\pi}{4}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{1+(0)^2}\\
 +
&&\\
 +
& = & \displaystyle{1.}
 +
\end{array}</math>
 
|-
 
|-
|
+
|So, the point &nbsp;<math>(x,y)</math>&nbsp; belongs to the curve.
 
|}
 
|}
  
Line 63: Line 93:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|Since &nbsp;<math style="vertical-align: -5px">r=1+\cos^2(2\theta),</math>
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dr}{d\theta}=-4\cos(2\theta)\sin(2\theta).</math>
 +
|-
 +
|Since
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta},</math>
 +
|-
 +
|we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\frac{dy}{dx}} & = & \displaystyle{\frac{-4\cos(2\theta)\sin(2\theta)\sin\theta+(1+\cos^2(2\theta))\cos\theta}{-4\cos(2\theta)\sin(2\theta)\cos\theta-(1+\cos^2(2\theta))\sin\theta}.}\\
 +
\end{array}</math>
 
|-
 
|-
 
|
 
|
Line 74: Line 117:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, recall from part (a) that the given point in polar coordinates is &nbsp;<math>\bigg(1,\frac{\pi}{4}\bigg).</math>
 +
|-
 +
|Therefore, the slope of the tangent line at this point is
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{m} & = & \displaystyle{\frac{-4\cos(\frac{\pi}{2})\sin(\frac{\pi}{2})\sin(\frac{\pi}{4})+(1+\cos^2(\frac{\pi}{2}))\cos(\frac{\pi}{4})}{-4\cos(\frac{\pi}{2})\sin(\frac{\pi}{2})\cos(\frac{\pi}{4})-(1+\cos^2(\frac{\pi}{2}))\sin(\frac{\pi}{4})}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{0+(1)(\frac{\sqrt{2}}{2})}{0-(1)(\frac{\sqrt{2}}{2})}}\\
 +
&&\\
 +
& = & \displaystyle{-1.}
 +
\end{array}</math>
 +
|-
 +
|Therefore, the equation of the tangent line at the point &nbsp;<math>(x,y)</math>&nbsp; is
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>y=-1\bigg(x-\frac{\sqrt{2}}{2}\bigg)+\frac{\sqrt{2}}{2}.</math>
 
|}
 
|}
  
Line 83: Line 138:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)'''  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; See above.
 
|-
 
|-
|&nbsp;&nbsp; '''(b)'''  
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; See above.
 
|-
 
|-
|&nbsp;&nbsp; '''(c)'''  
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>y=-1\bigg(x-\frac{\sqrt{2}}{2}\bigg)+\frac{\sqrt{2}}{2}</math>
 
|}
 
|}
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:21, 5 March 2017

A curve is given in polar coordinates by

(a) Show that the point with Cartesian coordinates    belongs to the curve.

(b) Sketch the curve.

(c) In Cartesian coordinates, find the equation of the tangent line at  

Foundations:  
1. What two pieces of information do you need to write the equation of a line?

       You need the slope of the line and a point on the line.

2. How do you calculate     for a polar curve  

       Since     we have

       


Solution:

(a)

Step 1:  
First, we need to convert this Cartesian point into polar.
We have
       
Also, we have
       
So,  
Now, this point in polar is  
Step 2:  
Now, we plug in    into our polar equation.
We get
       
So, the point    belongs to the curve.
(b)  
Insert graph

(c)

Step 1:  
Since  

       

Since

       

we have

       

Step 2:  
Now, recall from part (a) that the given point in polar coordinates is  
Therefore, the slope of the tangent line at this point is
       
Therefore, the equation of the tangent line at the point    is
       


Final Answer:  
    (a)     See above.
    (b)     See above.
    (c)    

Return to Sample Exam