Difference between revisions of "009C Sample Final 3, Problem 8"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 32: | Line 32: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |The area of the curve, <math>A</math> is | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{A} & = & \displaystyle{\int_0^{2\pi} \frac{1}{2}r^2~d\theta}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int_0^{2\pi} \frac{1}{2} (4+3\sin\theta)^2~d\theta.} | ||
+ | \end{array}</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 2: | ||
+ | |- | ||
+ | |Using the double angle formula for <math style="vertical-align: -5px">\cos(2\theta),</math> we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{A} & = & \displaystyle{\frac{1}{2}\int_0^{2\pi} (16+24\sin\theta+9\sin^2\theta)~d\theta} \\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{2}\int_0^{2\pi} \bigg(16+24\sin\theta+\frac{9}{2}(1-\cos(2\theta))\bigg)~d\theta}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{2}\bigg[16\theta-24\cos\theta+\frac{9}{2}\theta-\frac{9}{4}\sin(2\theta)\bigg]\bigg|_0^{2\pi}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{2}\bigg[\frac{41}{2}\theta-24\cos\theta-\frac{9}{4}\sin(2\theta)\bigg]\bigg|_0^{2\pi}.}\\ | ||
+ | \end{array}</math> | ||
|- | |- | ||
| | | | ||
Line 41: | Line 63: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | !Step | + | !Step 3: |
|- | |- | ||
− | | | + | |Lastly, we evaluate to get |
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{A} & = &\displaystyle{\frac{1}{2}\bigg[\frac{41}{2}(2\pi)-24\cos(2\pi)-\frac{9}{4}\sin(4\pi)\bigg]-\frac{1}{2}\bigg[\frac{41}{2}(0)-24\cos(0)-\frac{9}{4}\sin(0)\bigg]}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{2}(41\pi-24)-\frac{1}{2}(-24)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{41\pi}{2}.}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
+ | |||
Line 52: | Line 82: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' | + | | '''(a)''' See above |
|- | |- | ||
− | | '''(b)''' | + | | '''(b)''' <math>\frac{41\pi}{2}</math> |
|} | |} | ||
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 15:06, 5 March 2017
A curve is given in polar coordinates by
(a) Sketch the curve.
(b) Find the area enclosed by the curve.
Foundations: |
---|
The area under a polar curve is given by |
for appropriate values of |
Solution:
(a) |
---|
Insert graph |
(b)
Step 1: |
---|
The area of the curve, is |
|
Step 2: |
---|
Using the double angle formula for we have |
|
Step 3: |
---|
Lastly, we evaluate to get |
|
Final Answer: |
---|
(a) See above |
(b) |