Difference between revisions of "009C Sample Final 3, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 32: Line 32:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|The area of the curve, &nbsp;<math>A</math>&nbsp; is
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{A} & = & \displaystyle{\int_0^{2\pi} \frac{1}{2}r^2~d\theta}\\
 +
&&\\
 +
& = & \displaystyle{\int_0^{2\pi} \frac{1}{2} (4+3\sin\theta)^2~d\theta.}
 +
\end{array}</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 +
|-
 +
|Using the double angle formula for &nbsp;<math style="vertical-align: -5px">\cos(2\theta),</math>&nbsp; we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{A} & = & \displaystyle{\frac{1}{2}\int_0^{2\pi}  (16+24\sin\theta+9\sin^2\theta)~d\theta} \\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}\int_0^{2\pi}  \bigg(16+24\sin\theta+\frac{9}{2}(1-\cos(2\theta))\bigg)~d\theta}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}\bigg[16\theta-24\cos\theta+\frac{9}{2}\theta-\frac{9}{4}\sin(2\theta)\bigg]\bigg|_0^{2\pi}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}\bigg[\frac{41}{2}\theta-24\cos\theta-\frac{9}{4}\sin(2\theta)\bigg]\bigg|_0^{2\pi}.}\\
 +
\end{array}</math>
 
|-
 
|-
 
|
 
|
Line 41: Line 63:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 2: &nbsp;
+
!Step 3: &nbsp;
 
|-
 
|-
|
+
|Lastly, we evaluate to get
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{A} & = &\displaystyle{\frac{1}{2}\bigg[\frac{41}{2}(2\pi)-24\cos(2\pi)-\frac{9}{4}\sin(4\pi)\bigg]-\frac{1}{2}\bigg[\frac{41}{2}(0)-24\cos(0)-\frac{9}{4}\sin(0)\bigg]}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}(41\pi-24)-\frac{1}{2}(-24)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{41\pi}{2}.}\\
 +
\end{array}</math>
 
|}
 
|}
 +
  
  
Line 52: Line 82:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)'''  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; See above
 
|-
 
|-
|&nbsp;&nbsp; '''(b)'''  
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{41\pi}{2}</math>
 
|}
 
|}
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 15:06, 5 March 2017

A curve is given in polar coordinates by  

(a) Sketch the curve.

(b) Find the area enclosed by the curve.

Foundations:  
The area under a polar curve     is given by

         for appropriate values of  


Solution:

(a)  
Insert graph

(b)

Step 1:  
The area of the curve,    is

       

Step 2:  
Using the double angle formula for    we have

       

Step 3:  
Lastly, we evaluate to get

       


Final Answer:  
    (a)     See above
    (b)    

Return to Sample Exam