Difference between revisions of "009C Sample Final 2, Problem 8"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 6: | Line 6: | ||
|'''Taylor's Theorem''' | |'''Taylor's Theorem''' | ||
|- | |- | ||
− | | Let <math>f</math> be a function whose <math>n+1</math>th derivative exists on an interval <math>I</math> and let <math>c</math> be in <math>I.</math> | + | | Let <math style="vertical-align: -5px">f</math> be a function whose <math style="vertical-align: -2px">n+1</math>th derivative exists on an interval <math style="vertical-align: 0px">I</math> and let <math style="vertical-align: 0px">c</math> be in <math style="vertical-align: 0px">I.</math> |
|- | |- | ||
− | | Then, for each <math>x</math> in <math>I,</math> there exists <math>z_x</math> between <math>x</math> and <math>c</math> such that | + | | Then, for each <math style="vertical-align: 0px">x</math> in <math style="vertical-align: -4px">I,</math> there exists <math style="vertical-align: -3px">z_x</math> between <math style="vertical-align: 0px">x</math> and <math style="vertical-align: 0px">c</math> such that |
|- | |- | ||
| <math>f(x)=f(c)+f'(c)(x-c)+\frac{f''(c)}{2!}(x-c)^2+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^n+R_n(x),</math> | | <math>f(x)=f(c)+f'(c)(x-c)+\frac{f''(c)}{2!}(x-c)^2+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^n+R_n(x),</math> | ||
|- | |- | ||
− | | where <math>R_n(x)=\frac{f^{n+1}(z_x)}{(n+1)!}(x-c)^{n+1}.</math> | + | | where <math style="vertical-align: -18px">R_n(x)=\frac{f^{n+1}(z_x)}{(n+1)!}(x-c)^{n+1}.</math> |
|- | |- | ||
− | | Also, <math>|R_n(x)|\le \frac{\max |f^{n+1}(z)|}{(n+1)!}|(x-c)^{n+1}|.</math> | + | | Also, <math style="vertical-align: -17px">|R_n(x)|\le \frac{\max |f^{n+1}(z)|}{(n+1)!}|(x-c)^{n+1}|.</math> |
|} | |} | ||
Revision as of 12:37, 5 March 2017
Find such that the Maclaurin polynomial of degree of approximates within 0.0001 of the actual value.
Foundations: |
---|
Taylor's Theorem |
Let be a function whose th derivative exists on an interval and let be in |
Then, for each in there exists between and such that |
where |
Also, |
Solution:
Step 1: |
---|
Using Taylor's Theorem, we have that the error in approximating with |
the Maclaurin polynomial of degree is where |
Step 2: | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
We note that or | ||||||||||||||||
Therefore, we have | ||||||||||||||||
Now, we have the following table. | ||||||||||||||||
So, is the smallest value of where the error is less than or equal to 0.0001. | ||||||||||||||||
Therefore, for the Maclaurin polynomial approximates within 0.0001 of the actual value. |
Final Answer: |
---|