Difference between revisions of "009C Sample Final 2, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 5: | Line 5: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
+ | |- | ||
+ | |'''1.''' The Taylor polynomial of <math style="vertical-align: -5px">f(x)</math> at <math style="vertical-align: -1px">a</math> is | ||
|- | |- | ||
| | | | ||
+ | <math>\sum_{n=0}^{\infty}c_n(x-a)^n</math> where <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!}.</math> | ||
+ | |- | ||
+ | | '''2.''' '''Ratio Test''' | ||
+ | |- | ||
+ | | Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> | ||
|- | |- | ||
− | | | + | | Then, |
|- | |- | ||
| | | | ||
+ | If <math style="vertical-align: -4px">L<1,</math> the series is absolutely convergent. | ||
|- | |- | ||
| | | | ||
+ | If <math style="vertical-align: -4px">L>1,</math> the series is divergent. | ||
|- | |- | ||
| | | | ||
+ | If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive. | ||
|} | |} | ||
Line 25: | Line 35: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |We begin by finding the coefficients of the Maclaurin series for <math>f(x)=\frac{1}{(1-\frac{1}{2}x)^2}.</math> |
+ | |- | ||
+ | |We make a table to find the coefficients of the Maclaurin series. | ||
|- | |- | ||
| | | | ||
+ | <table border="1" cellspacing="0" cellpadding="6" align = "center"> | ||
+ | <tr> | ||
+ | <td align = "center"><math> n</math></td> | ||
+ | <td align = "center"><math> f^{(n)}(x) </math></td> | ||
+ | <td align = "center"><math> f^{(n)}(0) </math></td> | ||
+ | <td align = "center"><math> \frac{f^{(n)}(0)}{n!} </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math>0</math></td> | ||
+ | <td align = "center"><math> \frac{1}{(1-\frac{1}{2}x)^2} </math></td> | ||
+ | <td align = "center"><math> 1</math></td> | ||
+ | <td align = "center"><math> 1</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math>1</math></td> | ||
+ | <td align = "center"><math> \frac{1}{(1-\frac{1}{2}x)^3}</math></td> | ||
+ | <td align = "center"><math> 1 </math></td> | ||
+ | <td align = "center"><math> 1</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math>2</math></td> | ||
+ | <td align = "center"><math> \frac{\frac{3}{2}}{(1-\frac{1}{2}x)^4} </math></td> | ||
+ | <td align = "center"><math> \frac{3}{2} </math></td> | ||
+ | <td align = "center"><math> \frac{3}{4} </math></td> | ||
+ | </tr> | ||
+ | </table> | ||
|- | |- | ||
| | | | ||
Line 35: | Line 73: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |So, the first three terms of the Binomial Series is |
|- | |- | ||
− | | | + | | <math>1+x+\frac{3}{4}x^2.</math> |
|} | |} | ||
Line 82: | Line 120: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' | + | | '''(a)''' <math>1+x+\frac{3}{4}x^2</math> |
|- | |- | ||
| '''(b)''' The radius of convergence is <math style="vertical-align: 0px">R=2.</math> | | '''(b)''' The radius of convergence is <math style="vertical-align: 0px">R=2.</math> | ||
|} | |} | ||
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 11:50, 5 March 2017
(a) Consider the function Find the first three terms of its Binomial Series.
(b) Find its radius of convergence.
Foundations: |
---|
1. The Taylor polynomial of at is |
where |
2. Ratio Test |
Let be a series and |
Then, |
If the series is absolutely convergent. |
If the series is divergent. |
If the test is inconclusive. |
Solution:
(a)
Step 1: | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
We begin by finding the coefficients of the Maclaurin series for | ||||||||||||||||
We make a table to find the coefficients of the Maclaurin series. | ||||||||||||||||
| ||||||||||||||||
Step 2: |
---|
So, the first three terms of the Binomial Series is |
(b)
Step 1: |
---|
The Maclaurin series of is |
So, the Maclaurin series of is |
Step 2: |
---|
Now, we use the Ratio Test to determine the radius of convergence of this power series. |
We have |
Now, the Ratio Test says this series converges if So, |
Hence, the radius of convergence is |
Final Answer: |
---|
(a) |
(b) The radius of convergence is |