Difference between revisions of "009C Sample Final 2, Problem 9"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 61: | Line 61: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |We have <math>\frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math> |
| + | |- | ||
| + | |So, first we need to find <math>\frac{dy'}{d\theta}.</math> | ||
| + | |- | ||
| + | |We have | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}\bigg)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{(\cos(2\theta)-\sin\theta)(2\cos(2\theta)-\sin\theta)-(\sin(2\theta)+\cos\theta)(-2\sin(2\theta)-\cos\theta)}{(\cos(2\theta)-\sin\theta)^2}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{2\cos^2(2\theta)+2\sin^2(2\theta)-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta+\sin^2\theta+\cos^2\theta}{(\cos(2\theta)-\sin\theta)^2}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^2}}\\ | ||
| + | \end{array}</math> | ||
|- | |- | ||
| − | | | + | |since <math style="vertical-align: -2px">\sin^2\theta+\cos^2\theta=1</math> and <math style="vertical-align: -5px">2\cos^2(2\theta)+2\sin^2(2\theta)=2.</math> |
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |Now, using the resulting formula for <math>\frac{dy'}{d\theta},</math> we get | ||
|- | |- | ||
| | | | ||
| + | <math>\frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}.</math> | ||
|- | |- | ||
| | | | ||
Revision as of 20:52, 4 March 2017
A curve is given in polar coordinates by
(a) Sketch the curve.
(b) Compute
(c) Compute
| Foundations: |
|---|
| How do you calculate for a polar curve |
|
Since we have |
|
|
Solution:
| (a) |
|---|
| Insert sketch of graph |
(b)
| Step 1: |
|---|
| Since |
|
|
| Step 2: |
|---|
| Since |
|
|
| we have |
|
|
(c)
| Step 1: |
|---|
| We have |
| So, first we need to find |
| We have |
|
|
| since and |
| Step 2: |
|---|
| Now, using the resulting formula for we get |
|
|
| Final Answer: |
|---|
| (a) See above |
| (b) |
| (c) |