Difference between revisions of "009C Sample Final 2, Problem 9"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 34: | Line 34: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |Since <math style="vertical-align: -4px">r=\sin(2\theta),</math> |
|- | |- | ||
| | | | ||
| + | <math>\frac{dr}{d\theta}=2\cos(2\theta).</math> | ||
|- | |- | ||
| | | | ||
| Line 43: | Line 44: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |Since | ||
|- | |- | ||
| | | | ||
| + | <math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta},</math> | ||
| + | |- | ||
| + | |we have | ||
|- | |- | ||
| | | | ||
| + | <math style="vertical-align: -18px">y'=\frac{2\cos(2\theta)\sin\theta+\sin(2\theta)\cos\theta}{2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta}.</math> | ||
|} | |} | ||
| Line 73: | Line 80: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | '''(a)''' | + | | '''(a)''' See above |
|- | |- | ||
| − | | '''(b)''' | + | | '''(b)''' <math style="vertical-align: -18px">y'=\frac{2\cos(2\theta)\sin\theta+\sin(2\theta)\cos\theta}{2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta}.</math> |
|- | |- | ||
| − | | '''(c)''' | + | | '''(c)''' |
|} | |} | ||
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 20:50, 4 March 2017
A curve is given in polar coordinates by
(a) Sketch the curve.
(b) Compute
(c) Compute
| Foundations: |
|---|
| How do you calculate for a polar curve |
|
Since we have |
|
|
Solution:
| (a) |
|---|
| Insert sketch of graph |
(b)
| Step 1: |
|---|
| Since |
|
|
| Step 2: |
|---|
| Since |
|
|
| we have |
|
|
(c)
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) See above |
| (b) |
| (c) |