Difference between revisions of "009C Sample Final 2, Problem 10"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 19: | Line 19: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |First, we need to calculate <math style="vertical-align: -14px">\frac{dx}{dt}</math> and <math style="vertical-align: -14px">\frac{dy}{dt}.</math> |
+ | |- | ||
+ | |Since <math style="vertical-align: -14px">x=t^2,~\frac{dx}{dt}=2t.</math> | ||
+ | |- | ||
+ | |Since <math style="vertical-align: -14px">y=t^3,~\frac{dy}{dt}=3t^2.</math> | ||
|- | |- | ||
− | | | + | |Using the formula in Foundations, we have |
|- | |- | ||
| | | | ||
+ | <math>L=\int_1^2 \sqrt{(2t)^2+(3t^2)^2}~dt.</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Now, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{L} & = & \displaystyle{\int_1^2 \sqrt{4t^2+9t^4}~dt}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int_1^2 \sqrt{t^2(4+9t^2)}~dt}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int_1^2 t\sqrt{4+9t^2}~dt.}\\ | ||
+ | \end{array}</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 3: | ||
+ | |- | ||
+ | |Now, we use <math>u</math>-substitution. | ||
+ | |- | ||
+ | |Let <math>u=4+9t^2.</math> | ||
+ | |- | ||
+ | |Then, <math>du=18tdt</math> and <math>\frac{du}{18}=tdt.</math> | ||
+ | |- | ||
+ | |Also, since this is a definite integral, we need to change the bounds of integration. | ||
+ | |- | ||
+ | |We have | ||
+ | |- | ||
+ | | <math>u_1=4+9(1)^2=13</math> and <math>u_2=4+9(2)^2=40.</math> | ||
+ | |- | ||
+ | |Hence, | ||
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{L} & = & \displaystyle{\frac{1}{18}\int_{13}^{40} \sqrt{u}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{27} u^{\frac{3}{2}}\bigg|_{13}^{40}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{27}(40)^{\frac{3}{2}}-\frac{1}{27}(13)^{\frac{3}{2}}.}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 38: | Line 76: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | | <math>\frac{1}{27}(40)^{\frac{3}{2}}-\frac{1}{27}(13)^{\frac{3}{2}}</math> |
|} | |} | ||
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 21:31, 4 March 2017
Find the length of the curve given by
Foundations: |
---|
The formula for the arc length of a parametric curve with is |
|
Solution:
Step 1: |
---|
First, we need to calculate and |
Since |
Since |
Using the formula in Foundations, we have |
|
Step 2: |
---|
Now, we have |
|
Step 3: |
---|
Now, we use -substitution. |
Let |
Then, and |
Also, since this is a definite integral, we need to change the bounds of integration. |
We have |
and |
Hence, |
Final Answer: |
---|