Difference between revisions of "009C Sample Final 2, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
| Line 21: | Line 21: | ||
|- | |- | ||
| | | | ||
| − | <table border="1" cellspacing="0" cellpadding=" | + | <table border="1" cellspacing="0" cellpadding="11" align = "center"> |
<tr> | <tr> | ||
<td align = "center"><math> n</math></td> | <td align = "center"><math> n</math></td> | ||
| Line 77: | Line 77: | ||
|- | |- | ||
| Let <math style="vertical-align: -4px">T_n</math> be the Taylor polynomial of order <math>n.</math> | | Let <math style="vertical-align: -4px">T_n</math> be the Taylor polynomial of order <math>n.</math> | ||
| + | |- | ||
| + | | | ||
|- | |- | ||
| <math>T_0=\frac{\sqrt{2}}{2}</math> | | <math>T_0=\frac{\sqrt{2}}{2}</math> | ||
Revision as of 17:11, 10 March 2017
Find the Taylor Polynomials of order 0, 1, 2, 3 generated by at
| Foundations: |
|---|
| The Taylor polynomial of at is |
|
where |
Solution:
| Step 1: | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Let | ||||||||||||||||||||
| First, we make a table to find the coefficients of the Taylor polynomial. | ||||||||||||||||||||
|
|
| Step 2: |
|---|
| Let be the Taylor polynomial of order |
| Since we have |
| Final Answer: |
|---|
| Let be the Taylor polynomial of order |