Difference between revisions of "009C Sample Final 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 28: Line 28:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|Let &nbsp;<math>a_n</math>&nbsp; be the &nbsp;<math>n</math>th term of this sum.
+
|Let &nbsp;<math style="vertical-align: -3px">a_n</math>&nbsp; be the &nbsp;<math style="vertical-align: 0px">n</math>th term of this sum.
 
|-
 
|-
 
|We notice that  
 
|We notice that  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp, &nbsp; <math>\frac{a_2}{a_1}=\frac{-2}{4},~\frac{a_3}{a_2}=\frac{1}{-2},</math>&nbsp; and &nbsp;<math>\frac{a_4}{a_2}=\frac{-1}{2}.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{a_2}{a_1}=\frac{-2}{4},~\frac{a_3}{a_2}=\frac{1}{-2},</math>&nbsp; and &nbsp;<math>\frac{a_4}{a_2}=\frac{-1}{2}.</math>
 
|-
 
|-
|So, this is a geometric series with &nbsp;<math>r=\frac{-1}{2}.</math>
+
|So, this is a geometric series with &nbsp;<math style="vertical-align: -14px">r=\frac{-1}{2}.</math>
 
|-
 
|-
|Since &nbsp;<math>|r|<1,</math>&nbsp; this series converges.
+
|Since &nbsp;<math style="vertical-align: -5px">|r|<1,</math>&nbsp; this series converges.
 
|}
 
|}
  
Line 63: Line 63:
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{1}{(2x-1)(2x+1)}=\frac{A}{2x-1}+\frac{B}{2x+1}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{1}{(2x-1)(2x+1)}=\frac{A}{2x-1}+\frac{B}{2x+1}.</math>
 
|-
 
|-
|If we multiply this equation by &nbsp;<math>(2x-1)(2x+1),</math>&nbsp; we get
+
|If we multiply this equation by &nbsp;<math style="vertical-align: -5px">(2x-1)(2x+1),</math>&nbsp; we get
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>1=A(2x+1)+B(2x-1).</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>1=A(2x+1)+B(2x-1).</math>
 
|-
 
|-
|If we let &nbsp;<math>x=\frac{1}{2},</math>&nbsp; we get &nbsp;<math>A=\frac{1}{2}.</math>
+
|If we let &nbsp;<math style="vertical-align: -14px">x=\frac{1}{2},</math>&nbsp; we get &nbsp;<math style="vertical-align: -14px">A=\frac{1}{2}.</math>
 
|-
 
|-
|If we let &nbsp;<math>x=\frac{-1}{2},</math>&nbsp; we get &nbsp;<math>B=\frac{-1}{2}.</math>
+
|If we let &nbsp;<math style="vertical-align: -14px">x=\frac{-1}{2},</math>&nbsp; we get &nbsp;<math style="vertical-align: -14px">B=\frac{-1}{2}.</math>
 
|-
 
|-
 
|So, we have
 
|So, we have
Line 107: Line 107:
 
|If we compare &nbsp;<math>s_1,s_2,s_3,</math>&nbsp; we notice a pattern.
 
|If we compare &nbsp;<math>s_1,s_2,s_3,</math>&nbsp; we notice a pattern.
 
|-
 
|-
|We have &nbsp;<math>s_n=\frac{1}{2}\bigg(1-\frac{1}{2n+1}\bigg).</math>
+
|We have  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>s_n=\frac{1}{2}\bigg(1-\frac{1}{2n+1}\bigg).</math>
 
|}
 
|}
  
Line 125: Line 127:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|Since the partial sums converge,  the series converges and the sum of the series is &nbsp;<math>\frac{1}{2}.</math>
+
|Since the partial sums converge,  the series converges and the sum of the series is &nbsp;<math style="vertical-align: -15px">\frac{1}{2}.</math>
 
|}
 
|}
  

Revision as of 19:06, 4 March 2017

For each of the following series, find the sum if it converges. If it diverges, explain why.

(a)  

(b)  

Foundations:  
1. The sum of a convergent geometric series is  
        where    is the ratio of the geometric series
        and    is the first term of the series.
2. The  th partial sum,    for a series    is defined as

       


Solution:

(a)

Step 1:  
Let    be the  th term of this sum.
We notice that
          and  
So, this is a geometric series with  
Since    this series converges.
Step 2:  
Hence, the sum of this geometric series is

       

(b)

Step 1:  
We begin by using partial fraction decomposition. Let
       
If we multiply this equation by    we get
       
If we let    we get  
If we let    we get  
So, we have
       
Step 2:  
Now, we look at the partial sums,    of this series.
First, we have
       
Also, we have
       
and
       
If we compare    we notice a pattern.
We have
       
Step 3:  
Now, to calculate the sum of this series we need to calculate
       
We have
       
Since the partial sums converge, the series converges and the sum of the series is  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam