Difference between revisions of "009C Sample Final 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 28: Line 28:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Let &nbsp;<math>a_n</math>&nbsp; be the &nbsp;<math>n</math>th term of this sum.
 +
|-
 +
|We notice that
 +
|-
 +
|&nbsp; &nbsp; &nbsp, &nbsp; <math>\frac{a_2}{a_1}=\frac{-2}{4},~\frac{a_3}{a_2}=\frac{1}{-2},</math>&nbsp; and &nbsp;<math>\frac{a_4}{a_2}=\frac{-1}{2}.</math>
 
|-
 
|-
|
+
|So, this is a geometric series with &nbsp;<math>r=\frac{-1}{2}.</math>
 
|-
 
|-
|
+
|Since &nbsp;<math>|r|<1,</math>&nbsp; this series converges.
 
|}
 
|}
  
Line 38: Line 42:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Hence, the sum of this geometric series is
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\frac{a_1}{1-r}} & = & \displaystyle{\frac{4}{1-(-\frac{1}{2})}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{4}{\frac{3}{2}}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{8}{3}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 67: Line 78:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)'''  
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;<math>\frac{8}{3}</math>
 
|-
 
|-
 
|&nbsp;&nbsp; '''(b)'''  
 
|&nbsp;&nbsp; '''(b)'''  
 
|}
 
|}
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:49, 4 March 2017

For each of the following series, find the sum if it converges. If it diverges, explain why.

(a)  

(b)  

Foundations:  
1. The sum of a convergent geometric series is  
        where    is the ratio of the geometric series
        and    is the first term of the series.
2. The  th partial sum,    for a series    is defined as

       


Solution:

(a)

Step 1:  
Let    be the  th term of this sum.
We notice that
    &nbsp,     and  
So, this is a geometric series with  
Since    this series converges.
Step 2:  
Hence, the sum of this geometric series is

       

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)

Return to Sample Exam