Difference between revisions of "009C Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 41: Line 41:
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\lim_{n\rightarrow \infty}\frac{\ln(n)}{\ln(n+1)}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{x+1}}}\\
+
\displaystyle{\lim_{n\rightarrow \infty}\frac{\ln(n)}{\ln(n+1)}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\big(\frac{1}{x}\big)}{\big(\frac{1}{x+1}\big)}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{x+1}{x}}\\
 
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{x+1}{x}}\\

Revision as of 12:15, 18 March 2017

Test if the following sequences converge or diverge. Also find the limit of each convergent sequence.

(a)  

(b)  

Foundations:  
L'Hopital's Rule

        Suppose that     and     are both zero or both  

       If     is finite or  

       then  


Solution:

(a)

Step 1:  
First, we notice that    has the form  
So, we can use L'Hopital's Rule. To begin, we write
       
Step 2:  
Now, using L'Hopital's rule, we get
       

(b)

Step 1:  
Let

       

We then take the natural log of both sides to get
       
Step 2:  
We can interchange limits and continuous functions.
Therefore, we have

       

Now, this limit has the form  
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

       

Step 4:  
Since    we know
       


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam