Difference between revisions of "009C Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 56: Line 56:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Let
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{y} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.}
 +
\end{array}</math>
 
|-
 
|-
|
+
|We then take the natural log of both sides to get
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\ln y = \ln\bigg(\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n\bigg).</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|We can interchange limits and continuous functions.
 +
|-
 +
|Therefore, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\ln y} & = & \displaystyle{\lim_{n\rightarrow \infty} \ln \bigg(\frac{n}{n+1}\bigg)^n}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} n\ln\bigg(\frac{n}{n+1}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.}
 +
\end{array}</math>
 +
|-
 +
|Now, this limit has the form &nbsp;<math style="vertical-align: -13px">\frac{0}{0}.</math>
 +
|-
 +
|Hence, we can use L'Hopital's Rule to calculate this limit.
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Now, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(\frac{x}{x+1}\bigg)}{\frac{1}{x}}}\\
 +
&&\\
 +
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{x+1}{x}\frac{1}{(x+1)^2}}{\big(-\frac{1}{x^2}\big)}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{-x^2}{x(x+1)}}\\
 +
&&\\
 +
& = & \displaystyle{-1.}
 +
\end{array}</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 4: &nbsp;
 +
|-
 +
|Since &nbsp;<math>\ln y= -1,</math> we know
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y=e^{-1}.</math>
 
|}
 
|}
  
Line 77: Line 120:
 
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math>1</math>
 
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math>1</math>
 
|-
 
|-
|&nbsp;&nbsp; '''(b)'''  
+
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math>e^{-1}</math>
 
|}
 
|}
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:41, 4 March 2017

Test if the following sequences converge or diverge. Also find the limit of each convergent sequence.

(a)  

(b)  

Foundations:  
L'Hopital's Rule

        Suppose that   and   are both zero or both  

       If   is finite or  

       then


Solution:

(a)

Step 1:  
First, we notice that    has the form  
So, we can use L'Hopital's Rule. To begin, we write
       
Step 2:  
Now, using L'Hopital's rule, we get
       

(b)

Step 1:  
Let

       

We then take the natural log of both sides to get
       
Step 2:  
We can interchange limits and continuous functions.
Therefore, we have

       

Now, this limit has the form  
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

       

Step 4:  
Since   we know
       


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam