Difference between revisions of "009C Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 56: Line 56:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Let
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{y} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.}
 +
\end{array}</math>
 
|-
 
|-
|
+
|We then take the natural log of both sides to get
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\ln y = \ln\bigg(\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n\bigg).</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|We can interchange limits and continuous functions.
 +
|-
 +
|Therefore, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\ln y} & = & \displaystyle{\lim_{n\rightarrow \infty} \ln \bigg(\frac{n}{n+1}\bigg)^n}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} n\ln\bigg(\frac{n}{n+1}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.}
 +
\end{array}</math>
 +
|-
 +
|Now, this limit has the form &nbsp;<math style="vertical-align: -13px">\frac{0}{0}.</math>
 +
|-
 +
|Hence, we can use L'Hopital's Rule to calculate this limit.
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Now, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(\frac{x}{x+1}\bigg)}{\frac{1}{x}}}\\
 +
&&\\
 +
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{x+1}{x}\frac{1}{(x+1)^2}}{\big(-\frac{1}{x^2}\big)}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{-x^2}{x(x+1)}}\\
 +
&&\\
 +
& = & \displaystyle{-1.}
 +
\end{array}</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 4: &nbsp;
 +
|-
 +
|Since &nbsp;<math>\ln y= -1,</math> we know
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y=e^{-1}.</math>
 
|}
 
|}
  
Line 77: Line 120:
 
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math>1</math>
 
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math>1</math>
 
|-
 
|-
|&nbsp;&nbsp; '''(b)'''  
+
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math>e^{-1}</math>
 
|}
 
|}
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:41, 4 March 2017

Test if the following sequences converge or diverge. Also find the limit of each convergent sequence.

(a)  

(b)  

Foundations:  
L'Hopital's Rule

        Suppose that   and   are both zero or both  

       If   is finite or  

       then


Solution:

(a)

Step 1:  
First, we notice that    has the form  
So, we can use L'Hopital's Rule. To begin, we write
       
Step 2:  
Now, using L'Hopital's rule, we get
       

(b)

Step 1:  
Let

       

We then take the natural log of both sides to get
       
Step 2:  
We can interchange limits and continuous functions.
Therefore, we have

       

Now, this limit has the form  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{0}{0}.}
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

       

Step 4:  
Since   we know
       


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam