Difference between revisions of "009C Sample Final 2, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 4: Line 4:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|'''Taylor's Theorem'''
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math>f</math>&nbsp; be a function whose &nbsp;<math>n+1</math>th derivative exists on an interval &nbsp;<math>I</math>&nbsp; and let &nbsp;<math>c</math> be in <math>I.</math>
 
|-
 
|-
|  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Then, for each &nbsp;<math>x</math>&nbsp; in &nbsp;<math>I,</math>&nbsp; there exists &nbsp;<math>z_x</math>&nbsp; between &nbsp;<math>x</math>&nbsp; and &nbsp;<math>c</math>&nbsp; such that
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>f(x)=f(c)+f'(c)(x-c)+\frac{f''(c)}{2!}(x-c)^2+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^n+R_n(x),</math>
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; where &nbsp;<math>R_n(x)=\frac{f^{n+1}(z_x)}{(n+1)!}(x-c)^{n+1}.</math>
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; Also, <math>|R_n(x)|\le \frac{\max |f^{n+1}(z)|}{(n+1)!}|(x-c)^{n+1}|.</math>
 
|}
 
|}
  
Line 21: Line 23:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|Using Taylor's Theorem, we have that the error in approximating &nbsp;<math>\cos \frac{\pi}{3}</math>&nbsp; with
 +
|-
 +
|the Maclaurin polynomial of degree &nbsp;<math>n</math>&nbsp; is &nbsp;<math>R_n\bigg(\frac{\pi}{3}\bigg)</math>&nbsp; where
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\bigg|R_n\bigg(\frac{\pi}{3}\bigg)\bigg|\le \frac{\max |f^{n+1}(z)|}{(n+1)!}\bigg|\bigg(\frac{\pi}{3}-0\bigg)^{n+1}\bigg|.</math>
 
|-
 
|-
 
|
 
|
Line 31: Line 35:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|We note that &nbsp;<math>|f^{n+1}(z)|=|\cos(z)|\le 1</math>&nbsp; or &nbsp;<math>|f^{n+1}(z)|=|\cos(z)|\le 1.</math>
 +
|-
 +
|Therefore, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\bigg|R_n\bigg(\frac{\pi}{3}\bigg)\bigg|\le \frac{1}{(n+1)!}\bigg(\frac{\pi}{3}\bigg)^{n+1}.</math>
 +
|-
 +
|Now, we have the following table.
 +
|-
 +
|<table border="1" cellspacing="0" cellpadding="6" align = "center">
 +
  <tr>
 +
    <td align = "center"><math> n</math></td>
 +
    <td align = "center"><math> \approx\frac{1}{(n+1)!}\bigg(\frac{\pi}{3}\bigg)^{n+1}</math></td>
 +
  </tr>
 +
  <tr>
 +
    <td align = "center"><math>1</math></td>
 +
    <td align = "center"><math> 0.548311  </math></td>
 +
  </tr>
 +
<tr>
 +
    <td align = "center"><math>2</math></td>
 +
    <td align = "center"><math>  0.191396</math></td>
 +
  </tr>
 +
<tr>
 +
    <td align = "center"><math>3</math></td>
 +
    <td align = "center"><math> 0.050107 </math></td>
 +
  </tr>
 +
<tr>
 +
    <td align = "center"><math>4</math></td>
 +
    <td align = "center"><math> 0.01049 </math></td>
 +
  </tr>
 +
<tr>
 +
    <td align = "center"><math>5</math></td>
 +
    <td align = "center"><math> 0.00183 </math></td>
 +
  </tr>
 +
<tr>
 +
    <td align = "center"><math>6</math></td>
 +
    <td align = "center"><math> 0.000274 </math></td>
 +
  </tr>
 +
<tr>
 +
    <td align = "center"><math>7</math></td>
 +
    <td align = "center"><math> 0.0000358 </math></td>
 +
  </tr>
 +
</table>
 +
|-
 +
|So, &nbsp;<math>n=7</math>&nbsp; is the smallest value of &nbsp;<math>n</math>&nbsp; where the error is less than or equal to 0.0001.
 
|-
 
|-
|
+
|Therefore, for &nbsp;<math>n=7</math>&nbsp; the Maclaurin polynomial approximates &nbsp;<math>\cos \frac{\pi}{3}</math>&nbsp; within 0.0001 of the actual value.
 
|}
 
|}
  
Line 40: Line 87:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp;   
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>n=7.</math>  
 
|}
 
|}
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 12:29, 5 March 2017

Find    such that the Maclaurin polynomial of degree    of    approximates    within 0.0001 of the actual value.

Foundations:  
Taylor's Theorem
        Let    be a function whose  th derivative exists on an interval    and let   be in
        Then, for each    in    there exists    between    and    such that
       
        where  
        Also,


Solution:

Step 1:  
Using Taylor's Theorem, we have that the error in approximating    with
the Maclaurin polynomial of degree    is    where
       
Step 2:  
We note that    or  
Therefore, we have
       
Now, we have the following table.
So,    is the smallest value of    where the error is less than or equal to 0.0001.
Therefore, for    the Maclaurin polynomial approximates    within 0.0001 of the actual value.


Final Answer:  
       

Return to Sample Exam